Cutting the Gordian Knot: A Look Under the Hood of Ransomware Attacks

Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, Engin Kirda
In Proceedings of the Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)

malware measurement

In this paper, we present the results of a long-term study of ransomware attacks that have been observed in the wild between 2006 and 2014. We also provide a holistic view on how ransomware attacks have evolved during this period by analyzing 1,359 samples that belong to 15 different ransomware families. Our results show that, despite a continuous improvement in the encryption, deletion, and communication techniques in the main ransomware families, the number of families with sophisticated destructive capabilities remains quite small. In fact, our analysis reveals that in a large number of samples, the malware simply locks the victim’s computer desktop or attempts to encrypt or delete the victim’s files using only superficial techniques. Our analysis also suggests that stopping advanced ransomware attacks is not as complex as it has been previously reported. For example, we show that by monitoring abnormal file system activity, it is possible to design a practical defense system that could stop a large number of ransomware attacks, even those using sophisticated encryption capabilities. A close examination on the file system activities of multiple ransomware samples suggests that by looking at I/O requests and protecting Master File Table (MFT) in the NTFS file system, it is possible to detect and prevent a significant number of zero-day ransomware attacks.