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Abstract
Web cache deception (WCD) is an attack proposed in 2017,

where an attacker tricks a caching proxy into erroneously
storing private information transmitted over the Internet and
subsequently gains unauthorized access to that cached data.
Due to the widespread use of web caches and, in particular,
the use of massive networks of caching proxies deployed
by content distribution network (CDN) providers as a critical
component of the Internet, WCD puts a substantial population
of Internet users at risk.

We present the first large-scale study that quantifies the
prevalence of WCD in 340 high-profile sites among the Alexa
Top 5K. Our analysis reveals WCD vulnerabilities that leak
private user data as well as secret authentication and autho-
rization tokens that can be leveraged by an attacker to mount
damaging web application attacks. Furthermore, we explore
WCD in a scientific framework as an instance of the path
confusion class of attacks, and demonstrate that variations on
the path confusion technique used make it possible to exploit
sites that are otherwise not impacted by the original attack.
Our findings show that many popular sites remain vulnerable
two years after the public disclosure of WCD.

Our empirical experiments with popular CDN providers
underline the fact that web caches are not plug & play tech-
nologies. In order to mitigate WCD, site operators must adopt
a holistic view of their web infrastructure and carefully con-
figure cache settings appropriate for their applications.

1 Introduction

Web caches have become an essential component of the Inter-
net infrastructure with numerous use cases such as reducing
bandwidth costs in private enterprise networks and accelerat-
ing content delivery over the World Wide Web. Today caching
is implemented at multiple stages of Internet communications,
for instance in popular web browsers [45,58], at caching prox-
ies [55, 64], and directly at origin web servers [6, 46].

∗Currently employed by Google.

In particular, Content Delivery Network (CDN) providers
heavily rely on effective web content caching at their edge
servers, which together comprise a massively-distributed In-
ternet overlay network of caching reverse proxies. Popular
CDN providers advertise accelerated content delivery and
high availability via global coverage and deployments reach-
ing hundreds of thousands of servers [5, 15]. A recent scien-
tific measurement also estimates that more than 74% of the
Alexa Top 1K are served by CDN providers, indicating that
CDNs and more generally web caching play a central role in
the Internet [26].

While there exist technologies that enable limited caching
of dynamically-generated pages, web caching primarily tar-
gets static, publicly accessible content. In other words, web
caches store static content that is costly to deliver due to an ob-
ject’s size or distance. Importantly, these objects must not con-
tain private or otherwise sensitive information, as application-
level access control is not enforced at cache servers. Good
candidates for caching include frequently accessed images,
software and document downloads, streaming media, style
sheets, and large static HTML and JavaScript files.

In 2017, Gil presented a novel attack called web cache de-
ception (WCD) that can trick a web cache into incorrectly
storing sensitive content, and consequently give an attacker
unauthorized access to that content [23,24]. Gil demonstrated
the issue with a real-life attack scenario targeting a high pro-
file site, PayPal, and showed that WCD can successfully leak
details of a private payment account. Consequently, WCD
garnered significant media attention, and prompted responses
from major web cache and CDN providers [8,9,12,13,43,48].

At its core, WCD results from path confusion between an
origin server and a web cache. In other words, different in-
terpretations of a requested URL at these two points lead to
a disagreement on the cacheability of a given object. This
disagreement can then be exploited to trick the web cache
into storing non-cacheable objects. WCD does not imply
that these individual components—the origin server and web
cache—are incorrectly configured per se. Instead, their haz-
ardous interactions as a system lead to the vulnerability. As a
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result, detecting and correcting vulnerable systems is a cum-
bersome task, and may require careful inspection of the en-
tire caching architecture. Combined with the aforementioned
pervasiveness and critical role of web caches in the Internet
infrastructure, WCD has become a severely damaging issue.

In this paper, we first present a large-scale measurement
and analysis of WCD over 295 sites in the Alexa Top 5K. We
present a repeatable and automated methodology to discover
vulnerable sites over the Internet, and a detailed analysis of
our findings to characterize the extent of the problem. Our
results show that many high-profile sites that handle sensitive
and private data are impacted by WCD and are vulnerable to
practical attacks. We then discuss additional path confusion
methods that can maximize the damage potential of WCD,
and demonstrate their impact in a follow-up experiment over
an extended data set of 340 sites.

To the best of our knowledge, this is the first in-depth inves-
tigation of WCD in a scientific framework and at this scale. In
addition, the scope of our investigation goes beyond private
data leakage to provide novel insights into the severity of
WCD. We demonstrate how WCD can be exploited to steal
other types of sensitive data including security tokens, explain
advanced attack techniques that elevate WCD vulnerabilities
to injection vectors, and quantify our findings through further
analysis of collected data.

Finally, we perform an empirical analysis of popular CDN
providers, documenting their default caching settings and
customization mechanisms. Our findings underline the fact
that WCD is a system safety problem. Site operators must
adopt a holistic view of their infrastructure, and carefully
configure web caches taking into consideration their complex
interactions with origin servers.

To summarize, we make the following contributions:

• We propose a novel methodology to detect sites impacted
by WCD at scale. Unlike existing WCD scan tools that
are designed for site administrators to test their own
properties in a controlled environment, our methodology
is designed to automatically detect WCD in the wild.

• We present findings that quantify the prevalence of WCD
in 295 sites among the Alexa Top 5K, and provide a
detailed breakdown of leaked information types. Our
analysis also covers security tokens that can be stolen via
WCD as well as novel security implications of the attack,
all areas left unexplored by existing WCD literature.

• We conduct a follow-up measurement over 340 sites
among the Alexa Top 5K that show variations on the
path confusion technique make it possible to successfully
exploit sites that are not impacted by the original attack.

• We analyze the default settings of popular CDN
providers and document their distinct caching behavior,
highlighting that mitigating WCD necessitates a compre-
hensive examination of a website’s infrastructure.

Ethical Considerations. We have designed our measure-
ment methodology to minimize the impact on scanned sites,
and limit the inconvenience we impose on site operators. Sim-
ilarly, we have followed responsible disclosure principles to
notify the impacted parties, and limited the information we
share in this paper to minimize the risk of any inadvertent
damage to them or their end-users. We discuss details of the
ethical considerations pertaining to this work in Section 3.5.

2 Background & Related Work

In this section, we present an overview of how web cache
deception (WCD) attacks work and discuss related concepts
and technologies such as web caches, path confusion, and
existing WCD scanners. As of this writing, the academic
literature has not yet directly covered WCD. Nevertheless, in
this section we summarize previous publications pertaining
to other security issues around web caches and CDNs.

2.1 Web Caches

Repeatedly transferring heavily used and large web objects
over the Internet is a costly process for both web servers and
their end-users. Multiple round-trips between a client and
server over long distances, especially in the face of common
technical issues with the Internet infrastructure and routing
problems, can lead to increased network latency and result
in web applications being perceived as unresponsive. Like-
wise, routinely accessed resources put a heavy load on web
servers, wasting valuable computational cycles and network
bandwidth. The Internet community has long been aware of
these problems, and deeply explored caching strategies and
technologies as an effective solution.

Today web caches are ubiquitous, and are used at various—
and often multiple—steps of Internet communications. For
instance, client applications such as web browsers implement
their own private cache for a single user. Otherwise, web
caches deployed together with a web server, or as a man-in-
the-middle proxy on the communication path implement a
shared cache designed to store and serve objects frequently
accessed by multiple users. In all cases, a cache hit elimi-
nates the need to request the object from the origin server,
improving performance for both the client and server.

In particular, web caches are a key component of Content
Delivery Networks (CDN) that provide web performance and
availability services to their users. By deploying massively-
distributed networks of shared caching proxies (also called
edge servers) around the globe, CDNs aim to serve as many
requests as possible from their caches deployed closest to
clients, offloading the origin servers in the process. As a re-
sult of multiple popular CDN providers that cover different
market segments ranging from simple personal sites to large
enterprises, web caches have become a central component of



the Internet infrastructure. A recent study by Guo et al. esti-
mates that 74% of the Alexa Top 1K make use of CDNs [26].

The most common targets for caching are static but fre-
quently accessed resources. These include static HTML pages,
scripts and style sheets, images and other media files, and large
document and software downloads. Due to the shared nature
of most web caches, objects containing dynamic, personal-
ized, private, or otherwise sensitive content are not suitable
for caching. We point out that there exist technologies such
as Edge Side Includes [63] that allow caching proxies to
assemble responses from a cached static part and a freshly-
retrieved dynamic part, and the research community has also
explored caching strategies for dynamic content. That being
said, caching of non-static objects is not common, and is not
relevant to WCD attacks. Therefore, it will not be discussed
further in this paper.

The HTTP/1.1 specification defines Cache-Control head-
ers that can be included in a server’s response to signal to
all web caches on the communication path how to process
the transferred objects [21]. For example, the header “Cache-
Control: no-store” indicates that the response should not
be stored. While the specification states that web caches
MUST respect these headers, web cache technologies and
CDN providers offer configuration options for their users to
ignore and override header instructions. Indeed, a common
and easy configuration approach is to create simple caching
rules based on resource paths and file names, for instance,
instructing the web cache to store all files with extensions
such as jpg, ico, css, or js [14, 18].

2.2 Path Confusion

Traditionally, URLs referenced web resources by directly
mapping these to a web server’s filesystem structure,
followed by a list of query parameters. For instance,
example.com/home/index.html?lang=en would corre-
spond to the file home/index.html at that web server’s doc-
ument root directory, and lang=en represents a parameter
indicating the preferred language.

However, as web applications grew in size and complexity,
web servers introduced sophisticated URL rewriting mecha-
nisms to implement advanced application routing structures as
well as to improve usability and accessibility. In other words,
web servers parse, process, and interpret URLs in ways that
are not clearly reflected in the externally-visible representa-
tion of the URL string. Consequently, the rest of the communi-
cation endpoints and man-in-the-middle entities may remain
oblivious to this additional layer of abstraction between the
resource filesystem path and its URL, and process the URL
in an unexpected—and potentially unsafe—manner. This is
called path confusion.

The widespread use of clean URLs (also known as REST-
ful URLs) help illustrate this disconnect and the subsequent
issues resulting from different interpretations of a URL.

Clean URL schemes use structures that abstract away from
a web server’s internal organization of resources, and in-
stead provide a more readable API-oriented representation.
For example, a given web service may choose to struc-
ture the URL example.com/index.php?p1=v1&p2=v2 as
example.com/index/v1/v2 in clean URL representation.
Now, consider the case where a user accesses the same web
service using the URL example.com/index/img/pic.jpg.
The user and all technologies in the communication path
(e.g., the web browser, caches, proxies, web application fire-
walls) are likely to misinterpret this request, expect an image
file in return, and treat the HTTP response accordingly (e.g.,
web caches may choose to store the response payload). How-
ever, in reality, the web service will internally map this URL
to example.com/index.php?p1=img&p2=pic.jpg, and re-
turn the contents of index.php with an HTTP 200 status code.
Note that even when img/pic.jpg is an arbitrary resource
that does not exist on the web server, the HTTP 200 status
code will falsely indicate that the request was successfully
handled as intended.

Web application attacks that involve malicious payload in-
jection, such as cross-site scripting, are well-understood and
studied by both academics and the general security commu-
nity. Unfortunately, the security implications of path confu-
sion have started to garner attention only recently, and aca-
demic literature on the subject is sparse.

One notable class of attacks based on path confusion is
Relative Path Overwrite (RPO), first presented by Gareth
Heyes in 2014 [28]. RPO targets sites that utilize relative
paths for security-sensitive resource inclusions such as style
sheets and scripts. The attack is made possible by maliciously-
crafted URLs that are still interpreted in the same way their
benign counterparts are by web servers, but when used as
the base URL causes a web browser to expand relative paths
incorrectly. This results in attacker-controlled same-origin
inclusions. Other researchers have since proposed variations
on more advanced applications of RPO, which can elevate
this attack vector into numerous other vulnerabilities [17,
33, 36, 57]. Recently, Arshad et al. conducted a large-scale
measurement study of RPO in the wild and reported that 9%
of the Alexa Top 1M are vulnerable, and that more than one
third of these are exploitable [7].

Other related work include more general techniques for
exploiting URL parser behavior. For instance, Orange Tsai
presented a series of exploitation techniques that take advan-
tage of the quirks of built-in URL parsers in popular program-
ming languages and web frameworks [61, 62]. While Tsai’s
discussion mainly focuses on Server-Side Request Forgery,
these techniques are essentially instances of path confusion
and can be utilized in many attacks in the category.

Our focus in this paper is web cache deception, the most
recently discovered major security issue that is enabled by an
attacker exploiting a path confusion vulnerability. To the best
of our knowledge, this paper is the first academic exploration



of WCD in the literature, and also constitutes the first large-
scale analysis of its spread and severity.

2.3 Web Cache Deception
WCD is a recently-discovered manifestation of path confusion
that an attacker can exploit to break the confidentiality prop-
erties of a web application. This may result in unauthorized
disclosure of private data belonging to end-users of the target
application, or give the attacker access to sensitive security
tokens (e.g., CSRF tokens) that could be used to facilitate fur-
ther web application attacks by compromising authentication
and authorization mechanisms. Gil proposed WCD in 2017,
and demonstrated its impact with a practical attack against a
major online payment provider, PayPal [23, 24].

In order to exploit a WCD vulnerability, the attacker crafts
a URL that satisfies two properties:

1. The URL must be interpreted by the web server as a re-
quest for a non-cacheable page with private information,
and it should trigger a successful response.

2. The same URL must be interpreted by an intermediate
web cache as a request for a static object matching the
caching rules in effect.

Next, the attacker uses social engineering channels to lure
a victim into visiting this URL, which would result in the
incorrect caching of the victim’s private information. The
attacker would then repeat the request and gain access to the
cached contents. Figure 1 illustrates these interactions.

In Step 1 , the attacker tricks the victim into visiting a URL
that requests /account.php/nonexistent.jpg. At a first
glance this appears to reference an image file, but in fact does
not point to a valid resource on the server.

In Step 2 , the request reaches the web server and is pro-
cessed. The server in this example applies rewrite rules to
discard the non-existent part of the requested object, a com-
mon default behavior for popular web servers and application
frameworks. As a result, the server sends back a success re-
sponse, but actually includes the contents of account.php
in the body, which contains private details of the victim’s
account. Unaware of the URL mapping that happened at the
server, the web cache stores the response, interpreting it as a
static image.

Finally, in Step 3 , the attacker visits the same URL which
results in a cache hit and grants him unauthorized access to
the victim’s cached account information.

Using references to non-existent cacheable file names that
are interpreted as path parameters is an easy and effective
path confusion technique to mount a WCD attack, and is
the original attack vector proposed by Gil. However, we dis-
cuss novel and more advanced path confusion strategies in
Section 5. Also note that the presence of a Cache-Control:
no-store header value has no impact in our example, as it

is common practice to enable caching rules on proxy ser-
vices that simply ignore header instructions and implement
aggressive rules based on path and file extension patterns (see
Section 2.1).

WCD garnered significant media attention due to its se-
curity implications and high damage potential. Major web
cache technology and CDN providers also responded, and
some published configuration hardening guidelines for their
customers [8, 9, 43]. More recently, Cloudflare announced
options for new checks on HTTP response content types to
mitigate the attack [12].

Researchers have also published tools to scan for and detect
WCD, for instance, as an extension to the Burp Suite scanner
or as stand-alone tools [31, 54]. We note that these tools
are oriented towards penetration testing, and are designed to
perform targeted scans on web properties directly under the
control of the tester. That is, by design, they operate under
certain pre-conditions, perform information disclosure tests
via simple similarity and edit distance checks, and otherwise
require manual supervision and interpretation of the results.
This is orthogonal to the methodology and findings we present
in this paper. Our experiment is, instead, designed to discover
WCD vulnerabilities at scale in the wild, and does not rely on
page similarity metrics that would result in an overwhelming
number of false positives in an uncontrolled test environment.

2.4 Other Related Work

Caching mechanisms in many Internet technologies (e.g.,
ARP, DNS) have been targeted by cache poisoning attacks,
which involve an attacker storing a malicious payload in a
cache later to be served to victims. For example, James Kettle
recently presented practical cache poisoning attacks against
caching proxies [37, 38]. Likewise, Nguyen et al. demon-
strated that negative caching (i.e., caching of 4xx or 5xx error
responses) can be combined with cache poisoning to launch
denial-of-service attacks [47]. Although the primary goal of a
cache poisoning attack is malicious payload injection and not
private data disclosure, these attacks nevertheless manipulate
web caches using mechanisms similar to web cache deception.
Hence, these two classes of attacks are closely related.

More generally, the complex ecosystem of CDNs and their
critical position as massively-distributed networks of caching
reverse proxies have been studied in various security con-
texts [26, 56]. For example, researchers have explored ways
to use CDNs to bypass Internet censorship [22, 29, 67], ex-
ploit or weaponize CDN resources to mount denial-of-service
attacks [11, 60], and exploit vectors to reveal origin server
addresses behind proxies [34, 65]. On the defense front, re-
searchers have proposed techniques to ensure the integrity
of data delivered over untrusted CDNs and other proxy ser-
vices [40, 42, 44]. This research is orthogonal to WCD, and is
not directly relevant to our results.
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Figure 1: An illustrated example of web cache deception. Path confusion between a web cache and a web server leads to
unexpected caching of the victim’s private account details. The attacker can then issue a request resulting in a cache hit, gaining
unauthorized access to cached private information.

3 Methodology

We present our measurement methodology in three stages:
(1) measurement setup, (2) attack surface detection, and
(3) WCD detection. We illustrate this process in Figure 2.
We implemented the tools that perform the described tasks
using a combination of Google Chrome and Python’s Re-
quests library [52] for web interactions, and Selenium [53]
and Google Remote Debugging Protocol [25] for automation.

3.1 Stage 1: Measurement Setup

WCD attacks are only meaningful when a vulnerable site
manages private end-user information and allows performing
sensitive operations on this data. Consequently, sites that pro-
vide authentication mechanisms are prime targets for attacks,
and thus also for our measurements. The first stage of our
methodology identifies such sites and creates test accounts on
them.1

Domain Discovery. This stage begins by visiting the sites
in an initial measurement seed pool (e.g., the Alexa Top n

1In the first measurement study we present in Section 4, we scoped our
investigation to sites that support Google OAuth [51] for authentication due to
its widespread use. This was a design choice made to automate a significant
chunk of the initial account setup workload, a necessity for a large-scale
experiment. In our follow-up experiment later described in Section 5 we
supplemented this data set with an additional 45 sites that do not use Google
OAuth. We discuss these considerations in their corresponding sections.

domains). We then increase site coverage by performing sub-
domain discovery using open-source intelligence tools [1, 27,
50]. We add these newly-discovered sub-domains of the pri-
mary sites (filtered for those that respond to HTTP(s) requests)
to the seed pool.

Account Creation. Next, we create two test accounts on
each site: one for a victim, and the other for an attacker. We
populate each account with unique dummy values. Next, we
manually explore each victim account to discover data fields
that should be considered private information (e.g., name,
email, address, payment account details, security questions
and responses) or user-created content (e.g., comments, posts,
internal messages). We populate these fields with predefined
markers that can later be searched for in cached responses to
detect a successful WCD attack. On the other hand, no data
entry is necessary for attacker accounts.

Cookie Collection. Once successfully logged into the sites
in our seed pool, crawlers collect two sets of cookies for all
victim and attacker accounts. These are saved in a cookie jar to
be reused in subsequent steps of the measurement. Note that
we have numerous measures to ensure our crawlers remain
authenticated during our experiments. Our crawlers period-
ically re-authenticate, taking into account cookie expiration
timestamps. In addition, the crawlers use regular expressions
and blacklists to avoid common logout links on visited pages.
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Figure 2: A high-level overview of our WCD measurement methodology.

Table 1: Sample URL grouping for attack surface discovery.

Group By URL

Query Parameter http://example.com/?lang=en
http://example.com/?lang=fr

Path Parameter http://example.com/028
http://example.com/142

3.2 Stage 2: Attack Surface Detection
Domain Crawls. In the second stage, our goal is to map
from domains in the seed pool to a set of pages (i.e., complete
URLs) that will later be tested for WCD vulnerabilities. To
this end, we run a recursive crawler on each domain in the
seed pool to record links to pages on that site.

URL Grouping. Many modern web applications customize
pages based on query string or URL path parameters. These
pages have similar structures and are likely to expose similar
attack surfaces. Ideally, we would group them together and
select only one random instance as a representative URL to
test for WCD in subsequent steps.

Since performing a detailed content analysis is a costly
process that could generate an unreasonable amount of load on
the crawled site, our URL grouping strategy instead focuses
on the structure of URLs, and approximates page similarity
without downloading each page for analysis. Specifically, we
convert the discovered URLs into an abstract representation
by grouping those URLs by query string parameter names or
by numerical path parameters. We select one random instance
and filter out the rest. Table 1 illustrates this process.

This filtering of URLs significantly accelerates the mea-
surements, and also avoids overconsumption of the target
site’s resources with redundant scans in Stage 3. We stop
attack surface detection crawls after collecting 500 unique
pages per domain for similar reasons.

3.3 Stage 3: WCD Detection
In this final stage, we launch a WCD attack against every URL
discovered in Stage 2, and analyze the response to determine
whether a WCD vulnerability was successfully exploited.

WCD Attack. The attack we mount directly follows the
scenario previously described in Section 2.3 and illustrated in
Figure 1. For each URL:

1. We craft an attack URL that references a non-existent
static resource. In particular, we append to the original
page “/<random>.css”2. We use a random string as the
file name in order to prevent ordinary end-users of the
site from coincidentally requesting the same resource.

2. We initiate a request to this attack URL from the victim
account and record the response.

3. We issue the same request from the attacker account,
and save the response for comparison.

4. Finally, we repeat the attack as an unauthenticated user
by omitting any session identifiers saved in the attacker
cookie jar. We later analyze the response to this step
to ascertain whether attackers without authentication
credentials (e.g., when the site does not offer open or
free sign ups) can also exploit WCD vulnerabilities.

Marker Extraction. Once the attack scenario described
above is executed, we first check for private information dis-
closure by searching the attacker response for the markers that
were entered into victim accounts in Stage 1. If victim mark-
ers are present in URLs requested by an attacker account, the
attacker must have received the victim’s incorrectly cached
content and, therefore, the target URL contains an exploitable
WCD vulnerability. Because these markers carry relatively
high entropy, it is probabilistically highly unlikely that this
methodology will produce false positives.

Secret Extraction. We scan the attacker response for the
disclosure of secret tokens frequently used as part of web
application security mechanisms. These checks include com-
mon secrets (e.g., CSRF tokens, session identifiers) as well

2Our choice to use a style sheet in our payload is motivated by the fact
that style sheets are essential components of most modern sites, and also
prime choices for caching. They are also a robust choice for our tests. For
instance, many CDN providers offer solutions to dynamically resize image
files on the CDN edge depending on the viewport of a requesting client
device. Style sheets are unlikely to be manipulated in such ways.



as any other application-specific authentication and autho-
rization tokens (e.g., API credentials). We also check for
session-dependent resources such as dynamically-generated
JavaScript, which may have private information and secrets
embedded in them (e.g., as explored by Lekies et al. [39]).

In order to extract candidates for leaked secrets, we scan at-
tacker responses for name & value pairs, where either (1) the
name contains one of our keywords (e.g., csrf, xsrf, token,
state, client_id), or (2) the value has a random compo-
nent. We check for these name & value pairs in hidden HTML
form elements, query strings extracted from HTML anchor
elements, and inline JavaScript variables and constants. Sim-
ilarly, we extract random file names referenced in HTML
script elements. We perform all tests for randomness by first
removing dictionary words from the target string (i.e., us-
ing a list of 10,000 common English words [35]), and then
computing Shannon entropy over the remaining part.

Note that unlike our checks for private information leaks,
this process can result in false positives. Therefore, we per-
form this secret extraction process only when the victim and
attacker responses are identical (a strong indicator of caching),
or otherwise when we can readily confirm a WCD vulner-
ability by searching for the private information markers. In
addition, we later manually verify all candidate secrets ex-
tracted in this step.

3.4 Verification and Limitations

Researchers have repeatedly reported that large-scale Internet
measurements, especially those that use automated crawlers,
are prone to being blocked or served fake content by secu-
rity solutions designed to block malicious bots and content
scrapers [49, 66]. In order to minimize this risk during our
measurement, we used a real browser (i.e., Google Chrome)
for most steps in our methodology. For other interactions,
we set a valid Chrome user-agent string. We avoided gen-
erating excessive amounts of traffic and limited our crawls
as described above in order to avoid triggering rate-limiting
alerts, in addition to ethical motivations. After performing our
measurements, we manually verified all positive findings and
confirmed the discovered vulnerabilities.

Note that this paper has several important limitations, and
the findings should be considered a potentially loose lower
bound on the incidence of WCD vulnerabilities in the wild.
For example, as described in Section 4, our seed pool is biased
toward sites that support Google OAuth, which was a neces-
sary compromise to automate our methodology and render a
large-scale measurement feasible. Even under this constraint,
creating accounts on some sites required entering and veri-
fying sensitive information such as credit card or US social
security numbers which led to their exclusion from our study.

Furthermore, decisions such as grouping URLs based on
their structure without analyzing page content, and limiting
site crawls to 500 pages may have caused us to miss addi-

tional instances of vulnerabilities. Similarly, even though we
manually filtered out false positives during our secret token
extraction process and verified all findings, we do not have
a scalable way of detecting false negatives. We believe that
these trade-offs were worthwhile given the overall security
benefits of and lessons learned from our work. We emphasize
that the results in this paper represent a lower bound.

3.5 Ethical Considerations
Here, we explain in detail important ethical considerations
pertaining to this work and the results we present.

Performance Considerations. We designed our methodol-
ogy to minimize the performance impact on scanned sites and
inconvenience imposed on their operators. We did not perform
repeated or excessive automated scans of the targeted sites,
and ensured that our measurements did not generate unrea-
sonable amounts of traffic. We used only passive techniques
for sub-domain enumeration and avoided abusing external
resources or the target site’s DNS infrastructure.

Similarly, our stored modifications to crawled web applica-
tions only involved creating two test accounts and filling out
editable fields with markers that we later used for data leakage
detection. We believe this will have no material impact on site
operators, especially in the presence of common threats such
as malicious bots and credential stuffing tools that generate
far more excessive junk traffic and data.

Security Considerations. Our methodology entirely
avoids jeopardizing the security of crawled sites or their
end-users. In this work, we never injected or stored any
malicious payload to target sites, to web caches on the
communication path, or otherwise maliciously tampered
with any technology involved in the process. Likewise, the
experiments we performed all incorporated randomized
strings as the non-existent parts of URLs, thereby preventing
unsuspecting end-users from accidentally accessing our
cached data and receiving unexpected responses.

Note that this path randomization measure was used to
prevent inconveniencing or confusing end-users; since we
never exploited WCD to leak real personal data from a web
application or stored a malicious payload, our work never
posed a security risk to end-users.

Our experiments did not take into account robots.txt files.
This was a risk-based decision we consciously made, and
we believe that ignoring exclusion directives had no negative
impact on the privacy of these sites’ visitors. Robots.txt is not
a security or privacy mechanism, but is intended to signal to
data aggregators and search engines what content to index –
including a directive to exclude privacy sensitive pages would
actually be a misuse of this technology. This is not relevant to
our experiments, as we only collect content for our analysis,
and we do not index or otherwise publicly present site content.



Responsible Disclosure. In this paper, we present a de-
tailed breakdown of our measurement findings and results
of our analysis, but we refrain from explicitly naming the
impacted sites. Even though our methodology only utilized
harmless techniques for WCD detection, the findings point at
real-world vulnerabilities that could be severely damaging if
publicly disclosed before remediation.

We sent notification emails to publicly listed security con-
tacts of all impacted parties promptly after our discovery. In
the notification letters we provided an explanation of the
vulnerability with links to online resources and listed the vul-
nerable domain names under ownership of the contacted party.
We informed them of our intention to publicly publish these
results, noted that they will not be named, and advised that
they remediate the issue as adversaries can easily repeat our
experiment and compromise their sites. We also explicitly
stated that we did not seek or accept bug bounties for these
notifications.

We sent the notification letters prior to submitting this work
for review, therefore giving the impacted parties reasonably
early notice. As of this writing, 12 of the impacted sites have
implemented mitigations.

Repeatability. One of the authors of this paper is affiliated
with a major CDN provider at the time of writing. However,
the work and results we present in this paper do not use any
internal or proprietary company information, or any such infor-
mation pertaining to the company’s customers. We conducted
this work using only publicly available data sources and tools.
Our methodology is repeatable by other researchers without
access to any CDN provider internals.

4 Web Cache Deception Measurement Study

We conducted two measurement studies to characterize web
cache deception (WCD) vulnerabilities on the Internet. In this
first study we present in this section, the research questions
we specifically aim to answer are:

(Q1) What is the prevalence of WCD vulnerabilities on pop-
ular, highly-trafficked domains? (§4.2)

(Q2) Do WCD vulnerabilities expose PII and, if so, what
kinds? (§4.3)

(Q3) Can WCD vulnerabilities be used to defeat defenses
against web application attacks? (§4.3)

(Q4) Can WCD vulnerabilities be exploited by unauthenti-
cated users? (§4.3)

In the following, we describe the data we collected to carry
out the study. We discuss the results of the measurement, and
then consider implications for PII and important web security
defenses. Finally, we summarize the conclusions we draw
from the study. In Section 5, we will present a follow-up
experiment focusing on advanced path confusion techniques.

Table 2: Summary of crawling statistics.

Crawled Vulnerable

Pages 1,470,410 17,293 (1.2%)
Domains 124,596 93 (0.1%)
Sites 295 16 (5.4%)
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Figure 3: Distribution of the measurement data and vulnerable
sites across the Alexa Top 5K.

4.1 Data Collection

We developed a custom web crawler to collect the data used
in this measurement. The crawler ran from April 20-27, 2018
as a Kubernetes pod that was allocated 16 Intel Xeon 2.4 GHz
CPUs and 32 GiB of RAM. Following the methodology de-
scribed in Section 3, we configured the crawler to identify
vulnerable sites from the Alexa Top 5K at the time of the
experiment. In order to scalably create test accounts, we fil-
tered this initial measurement seed pool for sites that provide
an option for user authentication via Google OAuth. This
filtering procedure narrowed the set of sites considered in
this measurement to 295. Table 2 shows a summary of our
crawling statistics.

4.2 Measurement Overview

Alexa Ranking. From the 295 sites comprising the col-
lected data set, the crawler identified 16 sites (5.4%) to contain
WCD vulnerabilities. Figure 3 presents the distribution of all
sites and vulnerable sites across the Alexa Top 5K. From this,
we observe that the distribution of vulnerable sites is roughly
proportional to the number of sites crawled; that is, our data
does not suggest that the incidence of WCD vulnerabilities is
correlated with site popularity.



Table 3: Pages, domains, and sites labeled by CDN using HTTP header heuristics. These heuristics simply check for unique
vendor-specific strings added by CDN proxy servers.

CDN Crawled Vulnerable

Pages Domains Sites Pages Domains Sites

Cloudflare 161,140 (11.0%) 4,996 (4.0%) 143 (48.4%) 16,234 (93.9%) 72 (77.4%) 8 (50.0%)
Akamai 225,028 (15.3%) 16,473 (13.2%) 100 (33.9%) 1,059 (6.1%) 21 (22.6%) 8 (50.0%)
CloudFront 100,009 (6.8%) 10,107 (8.1%) 107 (36.3%) 2 (<0.1%) 1 (1.1%) 1 (6.2%)
Other CDNs 244,081 (16.6%) 2,456 (2.0%) 137 (46.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total CDN Use 707,210 (48.1%) 33,675 (27.0%) 244 (82.7%) 17,293 (100.0%) 93 (100.0%) 16 (100.0%)

Table 4: Response codes observed in the vulnerable data set.

Response Code Pages Domains Sites

404 Not Found 17,093 (98.8%) 82 (88.2%) 10 (62.5%)
200 Ok 205 (1.2%) 19 (20.4%) 12 (75.0%)

Content Delivery Networks (CDNs). Using a set of
heuristics that searches for well-known vendor strings in
HTTP headers, we labeled each domain and site with the
corresponding CDN. Table 3 shows the results of this label-
ing. Note that many sites use multiple CDN solutions, and
therefore the sum of values in the first four rows may exceed
the totals we report in the last row.

The results show that, even though WCD attacks are equally
applicable to any web cache technology, all instances of vul-
nerable pages we observed are served over a CDN. That being
said, vulnerabilities are not unique to any one CDN vendor.
While this may seem to suggest that CDN use is correlated
with an increased risk of WCD, we point out that 82.7% of
sites in our experiment are served over a CDN. A more bal-
anced study focusing on comparing CDNs to centralized web
caches is necessary to eliminate this inherent bias in our ex-
periment and draw meaningful conclusions. Overall, these
results indicate that CDN deployments are prevalent among
popular sites, and the resulting widespread use of web caches
may in turn lead to more opportunities for WCD attacks.

Response Codes. Table 4 presents the distribution of HTTP
response codes observed for the vulnerable sites. This distri-
bution is dominated by 404 Not Found which, while per-
haps unintuitive, is indeed allowed behavior according to
RFC 7234 [21]. On the other hand, while only 12 sites leaked
resources with a 200 OK response, during our manual exam-
ination of these vulnerabilities (discussed below) we noted
that more PII was leaked from this category of resource.

Cache Headers. Table 5 shows a breakdown of cache-
relevant headers collected from vulnerable sites. In partic-
ular, we note that despite the presence of headers whose
semantics prohibit caching—e.g., “Pragma: no-cache”,
“Cache-Control: no-store”—pages carrying these head-

ers are cached regardless, as they were found to be vulnerable
to WCD. This finding suggests that site administrators indeed
take advantage of the configuration controls provided by web
caches that allow sites to override header-specified caching
policies.

A consequence of this observation is that user-agents can-
not use cache headers to determine with certainty whether
a resource has in fact been cached or not. This has impor-
tant implications for WCD detection tools that rely on cache
headers to infer the presence of WCD vulnerabilities.

4.3 Vulnerabilities
Table 6 presents a summary of the types of vulnerabilities dis-
covered in the collected data, labeled by manual examination.

PII. 14 of the 16 vulnerable sites leaked PII of various kinds,
including names, usernames, email addresses, and phone num-
bers. In addition to these four main categories, a variety of
other categories of PII were found to be leaked. Broad exam-
ples of other PII include financial information (e.g., account
balances, shopping history) and health information (e.g., calo-
ries burned, number of steps, weight). While it is tempting
to dismiss such information as trivial, we note that PII such
as the above can be used as the basis for highly effective
spearphishing attacks [10, 19, 30, 32].

Security Tokens. Using the entropy-based procedure de-
scribed in Section 3, we also analyzed the data for the pres-
ence of leaked security tokens. Then, we manually verified
our findings by accessing the vulnerable sites using a browser
and checking for the presence of the tokens suspected to have
been leaked. Finally, we manually verified representative ex-
amples of each class of leaked token for exploitability using
the test accounts established during the measurement.

6 of the 16 vulnerable sites leaked CSRF tokens valid for
a session, which could allow an attacker to conduct CSRF
attacks despite the presence of a deployed CSRF defense. 3 of
these were discovered in hidden form elements used to protect
POST requests, while an additional 4 were found in inline
JavaScript that was mostly used to initiate HTTP requests. We
also discovered 2 sites leaking CSRF tokens in URL query



Table 5: Cache headers present in HTTP responses collected from vulnerable sites.

Header Pages Domains Sites

Expires: 1,642 (9.5%) 23 (24.7%) 13 (81.2%)

Pragma: no-cache 652 (3.8%) 11 (11.8%) 6 (37.5%)

Cache-Control: 1,698 (9.8%) 26 (28.0%) 14 (87.5%)
max-age=, public 1,093 (6.3%) 10 (10.8%) 7 (43.8%)
max-age= 307 (1.8%) 1 (1.1%) 1 (6.2%)
must-revalidate, private 102 (0.6%) 1 (1.1%) 1 (6.2%)
max-age=, no-cache, no-store 67 (0.4%) 3 (3.2%) 2 (12.5%)
max-age=, no-cache 64 (0.4%) 4 (4.3%) 1 (6.2%)
max-age=, must-revalidate 51 (0.3%) 1 (1.1%) 1 (6.2%)
max-age=, must-revalidate, no-transform, private 5 (<0.1%) 3 (3.2%) 1 (6.2%)
no-cache 5 (<0.1%) 2 (2.2%) 1 (6.2%)
max-age=, private 3 (<0.1%) 1 (1.1%) 1 (6.2%)
must-revalidate, no-cache, no-store, post-check=, pre-check= 1 (<0.1%) 1 (1.1%) 1 (6.2%)

All 1,698 (9.8%) 26 (28.0%) 14 (87.5%)

(none) 15,595 (90.2%) 67 (72.0%) 3 (18.8%)

Table 6: Types of vulnerabilities discovered in the data.

Leakage Pages Domains Sites

PII 17,215 (99.5%) 88 (94.6%) 14 (87.5%)
User 934 (5.4%) 17 (18.3%) 8 (50.0%)
Name 16,281 (94.1%) 71 (76.3%) 7 (43.8%)
Email 557 (3.2%) 10 (10.8%) 6 (37.5%)
Phone 102 (0.6%) 1 (1.1%) 1 (6.2%)

CSRF 130 (0.8%) 10 (10.8%) 6 (37.5%)
JS 59 (0.3%) 5 (5.4%) 4 (25.0%)
POST 72 (0.4%) 5 (5.4%) 3 (18.8%)
GET 8 (<0.1%) 4 (4.3%) 2 (12.5%)

Sess. ID / Auth. Code 1,461 (8.4%) 11 (11.8%) 6 (37.5%)
JS 1,461 (8.4%) 11 (11.8%) 6 (37.5%)

Total 17,293 93 16

parameters for GET requests, which is somewhat at odds with
the convention that GET requests should be idempotent.

6 of the 16 vulnerable sites leaked session identifiers or
user-specific API tokens in inline JavaScript. These session
identifiers could be used to impersonate victim users at the
vulnerable site, while the API tokens could be used to issue
API requests as a victim user.

Authenticated vs. Unauthenticated Attackers. The
methodology we described in Section 3 includes a detection
step intended to discover whether a suspected WCD vulnera-
bility was exploitable by an unauthenticated user by accessing
a cached page without sending any stored session identifiers
in the requests. In only a few cases did this automated
check fail; that is, in virtually every case the discovered
vulnerability was exploitable by an unauthenticated user.
Even worse, manual examination of the failure cases revealed
that in each one the crawler had produced a false negative
and that in fact all of the remaining vulnerabilities were

exploitable by unauthenticated users as well. This implies
that WCD, as a class of vulnerability, tends not to require an
attacker to authenticate to a vulnerable site in order to exploit
those vulnerabilities. In other words, requiring strict account
verification through credentials such as valid SSNs or credit
card numbers is not a viable mitigation for WCD.

4.4 Study Summary
Summarizing the major findings of this first experiment, we
found that 16 out of 295 sites drawn from the Alexa Top 5K
contained web cache deception (WCD) vulnerabilities. We
note that while this is not a large fraction of the sites scanned,
these sites have substantial user populations as to be expected
with their placement in the Alexa rankings. This, combined
with the fact that WCD vulnerabilities are relatively easy to
exploit, leads us to conclude that these vulnerabilities are
serious and that this class of vulnerability deserves attention
from both site administrators and the security community.

We found that the presence of cache headers was an unre-
liable indicator for whether a resource is cached, implying
that existing detection tools relying on this signal may in-
advertently produce false negatives when scanning sites for
WCD vulnerabilities. We found vulnerable sites to leak PII
that would be useful for launching spearphishing attacks, or
security tokens that could be used to impersonate victim users
or bypass important web security defenses. Finally, the WCD
vulnerabilities discovered here did not require attackers to
authenticate to vulnerable sites, meaning sites with restrictive
sign-up procedures are not immune to WCD vulnerabilities.

5 Variations on Path Confusion

Web cache technologies may be configured to make their
caching decisions based on complex rules such as pattern



example.com/account.php
example.com/account.php/nonexistent.css

(a) Path Parameter

example.com/account.php
example.com/account.php%0Anonexistent.css

(b) Encoded Newline (\n)

example.com/account.php;par1;par2
example.com/account.php%3Bnonexistent.css

(c) Encoded Semicolon (;)

example.com/account.php#summary
example.com/account.php%23nonexistent.css

(d) Encoded Pound (#)

example.com/account.php?name=val
example.com/account.php%3Fname=valnonexistent.css

(e) Encoded Question Mark (?)

Figure 4: Five practical path confusion techniques for craft-
ing URLs that reference nonexistent file names. In each ex-
ample, the first URL corresponds to the regular page, and the
second one to the malicous URL crafted by the attacker. More
generally, nonexistent.css corresponds to a nonexistent file
where nonexistent is an arbitrary string and .css is a popular
static file extension such as .css, .txt, .jpg, .ico, .js etc.

matches on file names, paths, and header contents. Launching
a successful WCD attack requires an attacker to craft a ma-
licious URL that triggers a caching rule, but also one that is
interpreted as a legitimate request by the web server. Caching
rules often cannot be reliably predicted from an attacker’s ex-
ternal perspective, rendering the process of crafting an attack
URL educated guesswork.

Based on this observation, we hypothesize that exploring
variations on the path confusion technique may increase the
likelihood of triggering caching rules and a valid web server
response, and make it possible to exploit additional WCD
vulnerabilities on sites that are not impacted by the originally
proposed attack. To test our hypothesis, we performed a sec-
ond round of measurements fourteen months after the first
experiment, in July, 2019.

Specifically, we repeated our methodology, but tested pay-
loads crafted with different path confusion techniques in an at-
tempt to determine how many more pages could be exploited
with path confusion variations. We used an extended seed
pool for this study, containing 295 sites from the original set
and an additional 45 randomly selected from the Alexa Top
5K, for a total of 340. In particular, we chose these new sites
among those that do not use Google OAuth in an attempt to
mitigate potential bias in our previous measurement. One neg-
ative consequence of this decision was that we had to perform

the account creation step entirely manually, which limited the
number of sites we could include in our study in this way.
Finally, we revised the URL grouping methodology by only
selecting and exploiting a page among the first 500 pages
when there is at least one marker in the content, making it
more efficient for our purposes, and less resource-intensive
on our targets. In the following, we describe this experiment
and present our findings.

5.1 Path Confusion Techniques
Recall from our analysis and Table 4 that our WCD tests
resulted in a 404 Not Found status code in the great major-
ity of cases, indicating that the web server returned an error
page that is less likely to include PII. In order to increase the
chances of eliciting a 200 OK response while still triggering a
caching rule, we propose additional path confusion techniques
below based on prior work [59, 61, 62]), also illustrated in
Figure 4. Note that Path Parameter in the rest of this section
refers to the original path confusion technique discussed in
this work.

Encoded Newline (\n). Web servers and proxies often
(but not always) stop parsing URLs at a newline character,
discarding the rest of the URL string. For this path con-
fusion variation, we use an encoded newline (%0A) in our
malicious URL (see Figure 4b). We craft this URL to exploit
web servers that drop path components following a new-
line (i.e., the server sees example.com/account.php),
but are fronted by caching proxies that instead
do not properly decode newlines (the proxy sees
example.com/account.php%0Anonexistent.css).
As a result, a request for this URL would result in a
successful response, and the cache would store the contents
believing that this is static content based on the nonexistent
file’s extension.

Encoded Semicolon (;). Some web servers and web ap-
plication frameworks accept lists of parameters in the URL
delimited by semicolons; however, the caching proxy fronting
the server may not be configured to recognize such lists. The
path confusion technique we present in Figure 4c exploits this
scenario by appending the nonexistent static file name after a
semicolon. In a successful attack, the server would decode the
URL and return a response for example.com/account.php,
while the proxy would fail to decode the semicolon, interpret
example.com/account.php%3Bnonexistent.css as a re-
source, and attempt to cache the nonexistent style sheet.

Encoded Pound (#). Web servers often process the pound
character as an HTML fragment identifier, and therefore
stop parsing the URL at its first occurrence. However,
proxies and their caching rules may not be configured to



Table 7: Response codes observed with successful WCD at-
tacks for each path confusion variation.

Technique Pages Domains Sites

200 !200 200 !200 200 !200

Path Parameter 3,870 25,932 31 93 13 7
Encoded \n 1,653 24,280 79 76 9 7
Encoded ; 3,912 25,576 91 92 13 7
Encoded # 7,849 20,794 102 85 14 7
Encoded ? 11,282 26,092 122 86 17 8
All Encoded 11,345 31,063 128 94 20 9

Total 12,668 32,281 132 97 22 9

decode pound signs, causing them to process the entire
URL string. The path confusion technique we present in
Figure 4d once again exploits this inconsistent interpretation
of the URL between a web server and a web cache, and
works in a similar manner to the encoded newline tech-
nique above. That is, in this case the web server would
successfully respond for example.com/account.php,
while the proxy would attempt to cache
example.com/account.php%23nonexistent.css.

Encoded Question Mark (?). This technique, illus-
trated in Figure 4e, targets proxies with caching rules
that are not configured to decode and ignore stan-
dard URL query strings that begin with a question
mark. Consequently, the web server would generate a
valid response for example.com/account.php and the
proxy would cache it, misinterpreting the same URL as
example/account.php%3Fname=valnonexistent.css.

5.2 Results

We applied our methodology to the seed pool of 340 sites, us-
ing each path confusion variation shown in Figure 4. We also
performed the test with the Path Parameter technique, which
was an identical test case to our original experiment. We did
this in order to identify those pages that are not vulnerable to
the original WCD technique, but only to its variations.

We point out that the results we present in this second
experiment for the Path Parameter technique differ from our
first measurement. This suggests that, in the fourteen-month
gap between the two experiments, either the site operators
fixed the issue after our notification, or that there were changes
to the site structure or caching rules that mitigated existing
vulnerabilities or exposed new vulnerable pages. In particular,
we found 16 vulnerable sites in the previous experiment and
25 in this second study, while the overlap between the two is
only 4.

Of the 25 vulnerable sites we discovered in this experi-
ment, 20 were among the previous set of 295 that uses Google
OAuth, and 5 among the newly picked 45 that do not. To test

Table 8: Vulnerable targets for each path confusion variation.

Technique Pages Domains Sites

Path Parameter 29,802 (68.9%) 103 (69.6%) 14 (56.0%)
Encoded \n 25,933 (59.9%) 86 (58.1%) 11 (44.0%)
Encoded ; 29,488 (68.2%) 105 (70.9%) 14 (56.0%)
Encoded # 28,643 (66.2%) 109 (73.6%) 15 (60.0%)
Encoded ? 37,374 (86.4%) 130 (87.8%) 19 (76.0%)
All Encoded 42,405 (98.0%) 144 (97.3%) 23 (92.0%)

Total 43,258 (100.0%) 148 (100.0%) 25 (100.0%)

whether the incidence distributions of vulnerabilities among
these two sets of sites show a statistically significant differ-
ence, we applied Pearson’s χ2 test, where vulnerability in-
cidence is treated as the categorical outcome variable and
OAuth/non-OAuth site sets are comparison groups. We ob-
tained a test statistic of 1.07 and a p-value of 0.30, showing
that the outcome is independent of the comparison groups,
and that incidence distributions do not differ significantly at
typically chosen significance levels (i.e., p > 0.05 ). That is,
our seed pool selection did not bias our findings.

Response Codes. We present the server response codes we
observed for vulnerable pages in Table 7. Notice that there is
a stark contrast in the number of 200 OK responses observed
with some of the new path confusion variations compared
to the original. For instance, while there were 3,870 success
codes for Path Parameter, Encoded # and Encoded ? resulted
in 7,849 and 11,282 success responses respectively. That is,
two new path confusion techniques were indeed able to elicit
significantly higher numbers of successful server responses,
which is correlated with a higher chance of returning private
user information. The remaining two variations performed
closer to the original technique.

Vulnerabilities. In this experiment we identified a total of
25 vulnerable sites. Table 8 shows a breakdown of vulnerable
pages, domains, and sites detected using different path confu-
sion variations. Overall, the original path confusion technique
resulted in a fairly successful attack, exploiting 68.9% of
pages and 14 sites. Still, the new techniques combined were
able to exploit 98.0% of pages, and 23 out of 25 vulnerable
sites, showing that they significantly increase the likelihood
for a successful attack.

We next analyze whether any path confusion technique was
able to successfully exploit pages that were not impacted by
others. We present these results in Table 9 in a matrix form,
where each element (i, j) shows how many pages/domain-
s/sites were exploitable using the technique in row i, whereas
utilizing the technique listed in column j was ineffective for
the same pages/domains/sites.

The results in Table 9 confirm that each path confusion
variation was able to attack a set of unique pages/domain-



Table 9: Number of unique pages/domains/sites exploited by each path confusion technique. Element (i, j) indicates number of
many pages exploitable using the technique in row i, whereas technique in column j is ineffective.

Technique Path Parameter Encoded \n Encoded ; Encoded # Encoded ?

Path Parameter - 4,390 / 26 / 7 1,010 / 5 / 4 5,691 / 11 / 3 5,673 / 12 / 3
Encoded \n 521 / 9 / 4 - 206 / 5 / 3 3,676 / 5 / 3 3,668 / 5 / 3
Encoded ; 696 / 7 / 4 3,761 / 24 / 6 - 4,881 / 9 / 2 4,863 / 8 / 0
Encoded # 4,532 / 17 / 4 6,386 / 28 / 7 4,036 / 13 / 3 - 90 / 1 / 1
Encoded ? 13,245 / 39 / 8 15,109 / 49 / 11 12,749 / 33 / 5 8,821 / 22 / 5 -

All Encoded 13,456 / 45 / 11 16,472 / 58 / 12 12,917 / 39 / 9 13,762 / 35 / 8 5,031 / 14 / 4

s/sites that were not vulnerable to other techniques, attesting
to the fact that utilizing a variety of techniques increases the
chances of successful exploitation. In fact, of the 25 vulnera-
ble sites, 11 were only exploitable using one of the variations
we presented here, but not the Path Parameter technique.

All in all, the results we present in this section confirm
our hypothesis that launching WCD attacks with variations
on path confusion, as opposed to only using the originally
proposed Path Parameter technique, results in an increased
possibility of successful exploitation. Moreover, two of the
explored variations elicit significantly more 200 OK server
responses in the process, increasing the likelihood of the web
server returning valid private information.

We stress that the experiment we present in this section
is necessarily limited in scale and scope. Still, we believe
the findings sufficiently demonstrate that WCD can be eas-
ily modified to render the attack more damaging, exploiting
unique characteristics of web servers and caching proxies in
parsing URLs. An important implication is that defending
against WCD through configuration adjustments is difficult
and error prone. Attackers are likely to have the upper hand
in devising new and creative path confusion techniques that
site operators may not anticipate.

6 Empirical Experiments

Practical exploitation of WCD vulnerabilities depends on
many factors such as the caching technology used and caching
rules configured. In this section, we present two empirical
experiments we performed to demonstrate the impact of dif-
ferent cache setups on WCD, and discuss our exploration of
the default settings for popular CDN providers.

6.1 Cache Location

While centralized server-side web caches can be trivially ex-
ploited from any location in the world, exploiting a distributed
set of CDN cache servers is more difficult. A successful WCD
attack may require attackers to correctly target the same edge
server that their victim connects to, where the cached sensitive
information is stored. As extensively documented in existing
WCD literature, attackers often achieve that by connecting to

the server of interest directly using its IP address and a valid
HTTP Host header corresponding to the vulnerable site.

We tested the impact of this practical constraint by per-
forming the victim interactions of our methodology from a
machine located in Boston, MA, US, and launching the attack
from another server in Trento, Italy. We repeated this test for
each of the 25 sites confirmed to be vulnerable in our second
measurement described in Section 5.

The results showed that our attack failed for 19 sites as we
predicted, requiring tweaks to target the correct cache server.
Surprisingly, the remaining 6 sites were still exploitable even
though headers indicated that they were served over CDNs
(3 Akamai, 1 Cloudflare, 1 CloudFront, and 1 Fastly).

Upon closer inspection of the traffic, we found headers in
our Fastly example indicating that a cache miss was recorded
in their Italy region, followed by a retry in the Boston region
that resulted in the cache hit, which led to a successful attack.
We were not able to explore the remaining cases with the data
servers exposed to us.

Many CDN providers are known to use a tiered cache
model, where content may be available from a parent cache
even when evicted from a child [3, 20]. The Fastly example
above demonstrates this situation, and is also a plausible expla-
nation for the remaining cases. Another possibility is that the
vulnerable sites were using a separate centralized server-side
cache fronted by their CDN provider. Unfortunately, with-
out a clear understanding of proprietary CDN internals and
visibility into site owners’ infrastructure, it is not feasible to
determine the exact cache interactions.

Our experiment confirms that cache location is a practical
constraint for a successful WCD attack where a distributed set
of cache servers is involved, but also shows that attacks are
viable in certain scenarios without necessitating additional
traffic manipulation.

6.2 Cache Expiration
Web caches typically store objects for a short amount of time,
and then evict them once they expire. Eviction may also take
place prematurely when web caches are under heavy load.
Consequently, an attacker may have a limited window of
opportunity to launch a successful WCD attack until the web
cache drops the cached sensitive information.



Table 10: Default caching behavior for popular CDNs, and cache control headers honored by default to prevent caching.

CDN Default Cached Objects
Honored Headers

no-store no-cache private

Akamai Objects with a predefined list of static file extensions only. 7 7 7

Cloudflare Objects with a predefined list of static file extensions, AND 3 3 3
all objects with cache control headers public or max-age > 0.

CloudFront All objects. 3 3 3

Fastly All objects. 7 7 3

In order to measure the impact of cache expiration on WCD,
we repeated the attacker interactions of our methodology with
1 hour, 6 hour, and 1 day delays. 3 We found that 16, 10, and
9 sites were exploitable in each case, respectively.

These results demonstrate that exploitation is viable in re-
alistic attack scenarios, where there are delays between the
victim’s and attacker’s interactions with web caches. That be-
ing said, caches will eventually evict sensitive data, meaning
that attacks with shorter delays are more likely to be success-
ful. We also note that we performed this test with a randomly
chosen vulnerable page for each site as that was sufficient for
our purposes. In practice, different resources on a given site
may have varying cache expiration times, imposing additional
constraints on what attacks are possible.

6.3 CDN Configurations
Although any web cache technology can be affected by WCD,
we established in Section 4.2 that CDNs play a large role
in cache use on the Internet. Therefore, we conducted an ex-
ploratory experiment to understand the customization features
CDN vendors offer and, in particular, to observe their default
caching behavior. To that end, we created free or trial accounts
with four major CDN providers: Akamai, Cloudflare, Cloud-
Front, and Fastly. We only tested the basic content delivery
solutions offered by each vendor and did not enable add-on
features such as web application firewalls.

We stress that major CDN providers offer rich configuration
options, including mechanisms for site owners to programmat-
ically interact with their traffic. A systematic and exhaustive
analysis of CDN features and corresponding WCD vectors is
an extremely ambitious task beyond the scope of this paper.
The results we present in this section are only intended to give
high-level insights into how much effort must be invested in
setting up a secure and safe CDN environment, and how the
defaults behave.

Configuration. All four CDN providers we experimented
with offer a graphical interface and APIs for users to set up
their origin servers, apply caching rules, and configure how

3We only tested 19 sites out of 25, as the remaining 6 had fixed their
vulnerabilities by the time we performed this experiment.

HTTP headers are processed. In particular, all vendors provide
ways to honor or ignore Cache-Control headers, and users can
choose whether to strip headers or forward them downstream
to clients. Users can apply caching decisions and time-to-live
values for cached objects based on expressions that match the
requested URLs.

Akamai and Fastly configurations are translated to and
backed by domain-specific configuration languages, while
Cloudflare and CloudFront do not expose their back-end to
users. Fastly internally uses Varnish caches, and gives users
full control over the Varnish Configuration Language (VCL)
that governs their setup. In contrast, Akamai appears to sup-
port more powerful HTTP processing features than Varnish,
but does not expose all features to users directly. Quoting
an Akamai blog post: “Metadata [Akamai’s configuration
language] can do almost anything, good and bad, which is
why WRITE access to metadata is restricted, and only Aka-
mai employees can add metadata to a property configuration
directly.” [4]

In addition to static configurations, both Akamai and Cloud-
flare offer mechanisms for users to write programs that exe-
cute on the edge server, and dynamically manipulate traffic
and caches [2, 16].

In general, while Cloudflare, CloudFront, and Fastly offer
free accounts suitable for personal use, they also have paid
tiers that lift restrictions (e.g., Cloudflare only supports 3
cache rules in the free tier) and provide professional services
support for advanced customization. Akamai strictly operates
in the business-to-business market where configuration is
driven by a professional services team, as described above.

Cacheability. Next, we tested the caching behavior of CDN
providers with a default configuration. Our observations here
are limited to 200 OK responses pertaining to WCD; for an in-
depth exploration of caching decisions involving 4xx or 5xx
error responses, we refer readers to Nguyen et al. [47]. We
summarize our observations in Table 10, which lists the con-
ditions for caching objects in HTTP responses, and whether
including the relevant Cache-Control headers prevent caching.

These results show that both Akamai and Cloudflare rely
on a predefined list of static file extensions (e.g., .jpg, .css,
.pdf, .exe) when making cacheability decisions. While Cloud-



flare allows origin servers to override the decision in both
directions via Cache-Control headers, either to cache non-
static files or prevent caching static files, Akamai’s default
rule applies unconditionally.

CloudFront and Fastly adopt a more aggressive caching
strategy: in the absence of Cache-Control headers all objects
are cached with a default time-to-live value. Servers behind
CloudFront can prevent caching via Cache-Control headers as
expected. However, Fastly only honors the private header
value.

6.4 Lessons Learned

The empirical evidence we presented in this section suggests
that configuring web caches correctly is not a trivial task.
Moreover, the complexity of detecting and fixing a WCD vul-
nerability is disproportionately high compared to launching
an attack.

As we have seen above, many major CDN vendors do not
make RFC-compliant caching decisions in their default con-
figurations [21]. Even the more restrictive default caching
rules based on file extensions are prone to security problems;
for example, both Akamai and Cloudflare could cache dy-
namically generated PDF files containing tax statements if
configured incorrectly. On the other hand, we do not believe
that these observations implicate CDN vendors in any way,
but instead emphasize that CDNs are not intended to be plug
& play solutions for business applications handling sensitive
data. All CDNs provide fine-grained mechanisms for caching
and traffic manipulation, and site owners must carefully con-
figure and test these services to meet their needs.

We reiterate that, while CDNs may be a prominent com-
ponent of the Internet infrastructure, WCD attacks impact
all web cache technologies. The complexity of configuring
CDNs correctly, the possibility of multi-CDN arrangements,
and other centralized caches that may be involved all imply
that defending against WCD requires site owners to adopt a
holistic view of their environment. Traditional security prac-
tices such as asset, configuration, and vulnerability manage-
ment must be adapted to take into consideration the entire
communication infrastructure as a system.

From an external security researcher’s perspective the chal-
lenge is even greater. As we have also discussed in the cache
location and expiration experiments, reasoning about a web
cache system’s internals in a black box fashion is a challeng-
ing task, which in turn makes it difficult to pinpoint issues
before they can be exploited. In contrast, attackers are largely
immune to this complexity; they often do not need to disen-
tangle the cache structure for a successful attack. Developing
techniques and tools for reliable detection of WCD—and sim-
ilar web cache attacks—is an open research problem. We be-
lieve a combination of systems security and safety approaches
would be a promising research direction, which we discuss
next as we conclude this paper.

7 Discussion & Conclusion

In this paper, we presented the first large-scale investigation
of WCD vulnerabilities in the wild, and showed that many
sites among the Alexa Top 5K are impacted. We demonstrated
that the vulnerable sites not only leak user PII but also secrets
that, once stolen by an attacker, can be used to bypass existing
authentication and authorization mechanisms to enable even
more damaging web application attack scenarios.

Alarmingly, despite the severity of the potential damage,
these vulnerabilities still persist more than two years after the
public introduction of the attack in February 2017. Similarly,
our second experiment showed that in the fourteen months
between our two measurements, only 12 out of 16 sites were
able to mitigate their WCD vulnerabilities, while the total
number of vulnerabilities rose to 25.

One reason for this slow adoption of necessary mitigations
could be a lack of user awareness. However, the attention
WCD garnered from security news outlets, research com-
munities, official web cache vendor press releases, and even
mainstream media also suggests that there may be other con-
tributing factors. In fact, it is interesting to note that there
exists no technology or tool proposed to date that allows site
operators to reliably determine if any part of their online ar-
chitecture is vulnerable to WCD, or to close their security
gaps. Similarly, there does not exist a mechanism for end-
users and web browsers to detect a WCD attack and protect
themselves. Instead, countermeasures are largely limited to
general guidance by web cache vendors and CDN providers
for their users to configure their services in consideration of
WCD vectors, and the tools available offer limited manual
penetration-testing capabilities for site operators with domain-
specific knowledge.

We assert that the above is a direct and natural consequence
of the fact that WCD vulnerabilities are a system safety prob-
lem. In an environment with WCD vulnerabilities, there are
no isolated faulty components; that is, web servers, load bal-
ancers, proxies, and caches all individually perform the func-
tionality they are designed for. Similarly, determining whether
there is human error involved and, if so, identifying where
that lies are both non-trivial tasks. In fact, site operators often
have legitimate needs to configure their systems in seemingly
hazardous ways. For example, a global corporation operating
hundreds to thousands of machines may find it technically or
commercially infeasible to revise the Cache-Control header
settings of their individual web servers, and may be forced to
instruct their CDN provider to perform caching based purely
on file names.

These are all strong indicators that the growing ecosystem
of web caches, in particular CDN-fronted web applications,
and more generally highly-distributed Internet-based archi-
tectures, should be analyzed in a manner that captures their
security and safety properties as a system. As aforementioned,
venerable yet still widely-used root cause analysis techniques



are likely to fall short in these efforts, because there is no
individual system component to blame for the failure. In-
stead, security researchers should adopt a systems-centric
security analysis, examining not only individual system com-
ponents but also their interactions, expected outcomes, haz-
ardous states, and accidents that may result. Modeling and an-
alyzing WCD attacks in this way, drawing from the rich safety
engineering literature [41] is a promising future research di-
rection that will help the security community understand and
address similar systems-level attacks effectively.
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