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ABSTRACT

Binary analyses based on deep neural networks (DNNs), or neural
binary analyses (NBAs), have become a hotly researched topic in
recent years. DNNs have been wildly successful at pushing the
performance and accuracy envelopes in the natural language and
image processing domains. Thus, DNNs are highly promising for
solving binary analysis problems that are hard due to a lack of
complete information resulting from the lossy compilation process.
Despite this promise, it is unclear that the prevailing strategy of
repurposing embeddings and model architectures originally devel-
oped for other problem domains is sound given the adversarial
contexts under which binary analysis often operates.

In this paper, we empirically demonstrate that the current state of
the art in neural function boundary detection is vulnerable to both
inadvertent and deliberate adversarial attacks. We proceed from the
insight that current generation NBAs are built upon embeddings
and model architectures intended to solve syntactic problems. We
devise a simple, reproducible, and scalable black-box methodol-
ogy for exploring the space of inadvertent attacks — instruction
sequences that could be emitted by common compiler toolchains
and configurations — that exploits this syntactic design focus. We
then show that these inadvertent misclassifications can be exploited
by an attacker, serving as the basis for a highly effective black-box
adversarial example generation process. We evaluate this methodol-
ogy against two state-of-the-art neural function boundary detectors:
XDA and DeepDi. We conclude with an analysis of the evaluation
data and recommendations for how future research might avoid
succumbing to similar attacks.
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« Security and privacy — Software reverse engineering; Sofi-
ware security engineering.
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1 INTRODUCTION

Binary analysis, or techniques for extracting and inferring informa-
tion from code compiled to native instruction set architectures (ISAs),
is an important set of capabilities and research area in modern se-
curity. The field encompasses a number of distinct topics such
as disassembly [5, 10, 48, 52, 54, 76], function boundary detec-
tion [6, 9, 17, 54, 64, 76], static similarity detection [22-24, 32, 41, 42,
46,72,717,78], type recovery [40], and full decompilation [25, 62, 73].
Each of these capabilities is in turn crucial for downstream secu-
rity tasks such as malware analysis [3, 33, 57, 70] and software
hardening via control-flow-integrity (CFI) enforcement, artificial
diversification, or debloating when source code is not available.

Instantiations of these capabilities in the form of deep neural
networks (DNNs) have generated substantial interest in recent
years. Neural binary analyses (NBAs) are seemingly well-matched
to the problem domain, where inference is necessary due to the
lossy compilation process. Recent work has shown great promise
for performing accurate disassembly [54, 76], function boundary
detection [17, 54, 64, 76], and static binary similarity detection [22-
24, 41, 42, 46, 72, 77, 78] that is simultaneously more efficient than
deterministic methods.

Despite this promise, questions remain as to how resilient NBAs
are in practice when confronted with the incredible diversity of
binary code found in the wild as well as motivated adversaries
seeking to actively evade or confuse detection techniques that make
use of binary analysis. Adversarial attacks against DNNs have been
intensely investigated in other problem domains [13, 53], but most
of these have been developed for continuous domains (e.g., images)
whereas NBAs operate in a discrete domain. Furthermore, due to
the issue of problem space mapping [55] one must develop specific
black-box attacks against NBAs.

Recent work has criticized the size and scope of data used to train
and evaluate NBA techniques published to date. For instance, Kim et
al. [36] studied NBAs that perform static similarity detection using
a large dataset of programs compiled with a variety of toolchains
and compiler options called BinKit. Using this dataset and a simple
baseline similarity detector called TikNib, they show that NBAs
do not necessarily outperform simpler, explainable methods such
as the one implemented by TikNib. Marcelli et al. [45] performed
a similar study also focused on static similarity detection NBAs,
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and show that published results do not necessarily hold when the
systems-under-test are trained and evaluated on larger, more repre-
sentative datasets. Other recent work has demonstrated that DNNs
used for static malware detection on binary programs are prone
to adversarial attacks [43], though this work relies on traditional
adversarial ML techniques to either use white-box gradient descent
or black-box hill climbing to find evading transformations.

In this paper, we consider the heretofore unexplored question of
NBA attack resilience in the context of function boundary detection.
We focus on two exemplars of the state of the art occupying two
representative points in the design space: XDA [54], which directly
applies the well-known Transformer model architecture [68] and
is intended to be robust to compiler optimization level [54, §4],
and DeepDi [76], which employs a relational graph convolutional
network and is explicitly advertised as intended for binary analysis
in adversarial contexts such as malware analysis - e.g., as part of a
malware analysis pipeline after dynamic analysis has been used to
unpack a sample.!

Observing that current systems are largely based on DNN com-
ponents developed to solve syntactic problems from other domains,
we conjecture that these systems can be evaded using syntactic
mutation. Building on this insight, we define a simple, reproducible
black-box methodology to identify misclassifying inputs to these
state-of-the-art function boundary detection NBAs at scale. Then,
we demonstrate how an attacker can systematically leverage these
misclassifications to either evade function detection or overwhelm
a downstream analysis with false detections via at-will injection of
false negatives and false positives.

From the techniques we developed, our analysis of the data leads
us to several conclusions.

(1) Sophisticated searches for adversarial examples using gra-
dient descent are not required to significantly degrade the
accuracy of NBA-based function boundary detection sys-
tems.

(2) Function boundary detection systems that build on embed-
dings and model architectures intended for solving syntactic
problems should be viewed in a similar light as syntactic
approaches for attack detection such as first-generation anti-
virus and signature-based intrusion detection - that is, with
healthy skepticism. This likely holds for other binary analy-
sis tasks as well.

(3) It is critical that future work is evaluated on large, repre-
sentative, and openly available datasets that include a range
of compiler configurations as well as adversarial examples;
building on existing foundations [36, 45] or this work would
be a good starting point. Otherwise, it is difficult to extrapo-
late published evaluation results to actual operational per-
formance.

We note that despite these conclusions, we do not intend to com-
pletely dismiss the promise of neural binary analyses. We discuss
potential avenues for future research to mitigate the attacks found
using our methodology in §6.

In summary, the contributions of this paper are the following.

In their paper, the authors “demonstrate how DeepDi is used in malware classifi-
cation” [76, p. 2] by evaluating their prototype on data from the Microsoft Malware
Classification Challenge, comparing against MalConv [58].
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(1) We propose a simple, reproducible black-box methodology
for evaluating the resilience of function boundary detection
NBAs to attacks at scale.

(2) We demonstrate the susceptibility of the current state of
the art, represented by XDA [54] and DeepDi [76], to pro-
ducing overwhelming false negatives and false positives to
downstream binary analyses.

(3) We discuss and synthesize conclusions from an analysis of
the evaluation data, and suggest several paths forward to
mitigate similar attacks against neural binary analysis.

The source code and datasets are available at https://osf.io/
bedxq/.

2 PROBLEM STATEMENT AND MOTIVATION
2.1 Binary Analysis

The term “binary analysis” encompasses a wide range of techniques
that all attempt to extract information from programs that have
been compiled to a native instruction set architecture (ISA). These
techniques range from fundamental analyses such as disassem-
bly [52, 54, 76] and function boundary detection [9, 17, 54, 76] to
downstream tasks that build on prior analyses such as static sim-
ilarity detection [24, 32, 42, 77, 78], type recovery [40], malware
detection [3, 33, 57, 70], and full decompilation [25, 62, 73]. De-
signing accurate and efficient binary analyses is substantially more
difficult than for source code due to the inherently lossy compilation
process. That is, compiler toolchains discard much of the higher-
level abstractions present in source code when lowering to an ISA.
Thus, binary analyses must operate with incomplete information
and are virtually always unsound. Compounding this difficulty is
that binary analyses are often, though not always, performed under
a strong threat model [59] in which active adversaries attempt to
evade or otherwise confuse those analyses.

While binary analyses have traditionally employed determinis-
tic methods, the lack of source code naturally suggests inference
methods as a promising approach for improving both accuracy and
performance. In that light, it should come as no surprise that deep
neural networks (DNNs) have come to the fore as a basis for binary
analysis research. Table 1 presents an overview of recent work in
this vein, to which we refer hereinafter as neural binary analyses
or NBAs.

Each entry in Table 1 lists the input, embedding, model archi-
tecture, and the binary analyses implemented. An embedding is
simply a procedure for mapping input data to a representation
on which that model performs training and inference. Common
choices of embeddings are one-hot encoding of byte sequences, or
text embeddings such as word2vec [47] applied to the token stream
produced by a disassembler. The model architecture, on the other
hand, is the neural network proper; that is, the set of layers, inter-
connections, and weights responsible for inference. It is common
for NBAs to repurpose model architectures developed for natural
language or image analysis tasks; examples include recurrent neu-
ral networks (RNNs), convolutional neural networks (CNNs), and
the Transformer architecture [68].

Motivation. Recent prior work has studied the accuracy of
NBAs for static similarity detection [36, 45] and malware detec-
tion [43]. However, to the best of our knowledge, the question of
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System Input Embedding Architecture Capabilities
BiRNN [64] Bytes One-hot encoding RNN F
MtNet [33] API calls, memory objects  Bit vector Feedforward M
Eklayva [17] Disassembly text word2vec [47] RNN F
Gemini [72] ACFG structure2vec [19] Siamese S
Sleipnir [3] Windows API invocations  Bit vector Feedforward M
SAFE [46] Disassembly text word2vec [47] BiRNN, Siamese S
asm2vec [22] Disassembly text PV-DM [39] LSTM S
Coda [25] Disassembly text AST Tree-LSTM [66] R
InnerEye [78] Disassembly text word2vec [47] LSTM S
Instruction2Vec [41] Disassembly text word2vec [47] CNN S
Order Matters [77] Disassembly text BERT [21], CNN MPNN [26], CNN S
DeepVSA [31] One-hot encoding Context vectors LSTM v
DeeplmgMalDetect [70]  Pixels — RNN M
DeepBinDiff [23] Disassembly text word2vec [47] ANN S
XDA [54] Bytes One-hot encoding Transformer [68] D,F
PalmTree [42] Disassembly text BERT [21] — F, S,V
Codee [74] Disassembly text word2vec [47], node2vec [28] — S

DeepDi [76] Instruction metadata RNN

Relational-GCN [61] D,F

Table 1: Summary comparison of various neural binary analysis systems. Note that all of these systems are at least in part built
on embeddings and model architectures developed to solved problems in the NLP or image processing domains. Capabilities: D
= disassembly, F = function identification, V = value set analysis, S = similarity, R = decompilation, M = malware detection or

classification.

whether NBAs are a suitable solution for function boundary de-
tection has not been definitively studied. This paper attempts to
answer this question, and thus focuses specifically on prominent
systems targeting the function boundary detection task.

2.2 Function Boundary Detection

Function boundary detection is a fundamental binary analysis that
typically occurs directly after, or even in tandem with, disassem-
bly [52]. Identifying functions is crucial for many downstream
tasks. For instance, most static similarity algorithms consider pairs
of functions when computing distances. Functions are also impor-
tant inputs to recursive descent disassemblers as starting points for
recursive disassembly or as possible callees of indirect call sites.

If function detection is performed as part of a manual process
- e.g., interactive reverse engineering provided by tools like IDA
Pro [29], Ghidra [50], or Binary Ninja [69] — excessive false positives
could lead to user fatigue and, in turn, an unusable tool [8]. False
negatives, on the other hand, are perhaps even more concerning
since failing to identify functions could directly lead to evasion
opportunities for attackers that aspire to elude detection.

Function boundary misclassifications can also have a large im-
pact on the accuracy and utility of an automated analysis pipeline.
For instance, it is common to combine successive rounds of static
and dynamic analysis to, e.g., first unpack a malware sample in a
sandbox so that an efficient static analysis can be performed on an
unobfuscated dropped or in-memory binary [75]. False negative
function detections in this scenario could again lead to detection
“blind spots,” while false positives could degrade the efficiency or
accuracy of downstream analyses.

More formally, we can think of a function boundary detection
NBA as a procedure that learns a mapping from bytes or instructions
in a binary, depending on the embedding, to one of three labels:
S for function entry points, E for function exit points, and N for
all other points. Let B be the set of binary inputs and N be the set
of possible byte or instruction indices in each binary. We can then

denote this mapping as
F:BxNr L={SEN}. (1)

Early work in the NBA space heavily borrowed from DNNs built
to tackle natural language processing (NLP) problems. The first
system to adopt this approach was BiRNN [64], which treated byte
sequences comprising binaries as tokens in a language. BIRNN
converts each input byte into R?°® vectors using a one-hot encoding,
where a byte’s value is indicated by the position of the single 1 in a
vector. Encoded bytes are then fed to a bi-directional RNN, where
the use of two RNNs allows for prediction of a byte label using both
preceding and succeeding bytes as context.

XDA [54] built upon BiRNN’s approach to function boundary
detection by adapting another powerful model architecture from
the NLP literature: Transformer [68]. Transformer pioneered the
concept of self-attention, where an attention layer allows the model
to process sequential data out of order. This allows Transformer-
based models to flexibly learn and infer meaning from context as
well as parallelize better than prior architectures like RNN, LSTM,
and GRU. Transformer-based models such as BERT [21] (Bidirec-
tional Encoder Representations from Transformers) and the GPT
family [14] (Generative Pre-Trained Transformer) represent the
state of the art in NLP model architectures.

XDA’s implementation [35] directly applies a popular implemen-
tation of BERT called RoBERTa (provided by Facebook’s Fairseq [51]
library) to the binary disassembly and function boundary detection
tasks. Binaries are processed in 512-byte chunks, and a one-hot
encoding is used to produce R3¢ vectors to be processed by the
network. In addition to byte values, the input vocabulary defines
five additional tokens representing padding, start-of-sequence, end-
of-sequence, unknown, and mask (not all are used by XDA). In the
first of two phases, the model is pre-trained using masked language
modeling (MLM), which essentially teaches the model to predict
byte values given surrounding context. The resulting model is then
fine-tuned in the second phase to transfer the knowledge learned in
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the first phase to a particular binary analysis task such as function
boundary detection.

DeepDi [76] is a state-of-the-art example of an NBA-based dis-
assembly and function boundary detection system.? While DeepDi
follows in the tradition of BiRNN and XDA by building upon ex-
isting model architectures, in this case, R-GCN [61] (Relational
Graph Convolutional Model), it improves on prior work in several
ways. First, it eschews the use of deep learning altogether for the
initial disassembly step, choosing instead to rely on superset dis-
assembly [10] to recover all possible instructions contained in an
input binary. The instruction superset, in the form of 4-tuples of
(opcode, mod_rm, scale_index, rex_prefix), is then converted into a
fixed-dimension embedding using a learned embedding layer. Each
embedding is concatenated with the following two instruction em-
beddings which is fed to an RNN to arrive at a final instruction
representation. These representations then serve as input to the
R-GCN, which models various relationships between instructions
using an Instruction Flow Graph (IFG) in order to weed out invalid
instructions from the superset and retain only the “true” disassem-
bly.

To identify function entry points, DeepDi first collects a set of
candidate entry points by applying a set of heuristics to instructions
identified as valid from the superset. Each candidate instruction is
packed with the three preceding and three succeeding instructions
and then fed to the entry point recovery model. This model consists
of an embedding layer, a GRU layer, and a two-layer perceptron
classifier. The authors of DeepDi note that while the model achieved
an average F1 score of 98.6% on the function start detection task
in their evaluation, their heuristics-based approach “will miss tail
jumps and functions with unseen prologues [76, p. 7]”

2.3 Semantics, or Merely Syntax?

While systems like XDA make repeated reference to “learning se-
mantics,” these representations do not encode the semantic outcome
of the input when executed on a system. We conjecture this limita-
tion is due to the approach of being trained using only disassembled
instructions or raw sequences of bytes extracted from binaries, as
correspondence is limited to patterns of bytes or textual tokens
presented during training. Absent of semantic meaning, code iso-
morphisms that syntactically appear drastically different might well
not be detected as semantically equivalent.

To illustrate, Listing 1 presents a naive addition function and its
compilation to x86_64 assembly using two commonly available op-
timization levels: 00 and 03. The resulting code, while semantically
equivalent, has radically different syntactic forms, and systems re-
lying only on detecting sequences of bytes or instructions would
fail to identify the optimized version if they have not encountered
a similar example during training. While an argument can be made
for generating comprehensive datasets that contain both versions
(and indeed virtually all current methods do try to include these
common compiler optimizations), we argue that such an approach
cannot scale to include every possible combination of all available
compiler flags. In essence, this places a hard constraint on what

2DeepDi only recovers function entry points, and so is more accurately called a function
start detection system.
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int add(int a, int b) {

1

2 if (a == 0)

3 return b;

4 else if (b == 0)

5 return a;

6 return a + b;

7}

1 add_00:

2 push rbp ; save caller fp

3 mov rbp, rsp ; set fp

4 mov  dword [rbp-0x4], edi ; get argl

5 mov  dword [rbp-0x8], esi ; get arg2

6 cmp  dword [rbp-0x4], 0x@ ; compare argl to 0
7 jne .check_arg2

8 mov  eax, dword [rbp-0x8] ; return arg2

9 jmp .return

10 .check_arg2:

11 cmp  dword [rbp-0x8], 0x@ ; compare arg2 to 0
12 jne .do_add

13 mov  eax, dword [rbp-0x4] ; return argl

14 jmp .return

15 .do_add:

16 mov  edx, dword [rbp-0x4]

17 mov  eax, dword [rbp-0x8]

18 add eax, edx ; return argl + arg2
19 .return:
20 pop  rbp ; restore caller fp
21 ret ; return to caller
1 add_03:

2 lea eax, [rdit+rsix1] ; return argl + arg2
3 ret ; return to caller

Listing 1: Compiler optimizations can have a drastic effect
on program representation in compiled code. Relying only
on sequences of bytes or textual tokens absent of semantic
information limits detection only to known syntactic pat-
terns.

is possible for NBA models to learn in the absence of semantic
information.

In the remainder of this paper, we build upon this insight to
demonstrate systematic attacks against neural binary analyses for
function boundary detection.

3 ATTACKING NEURAL FUNCTION
BOUNDARY DETECTION

In our evaluation of neural function boundary detection, we focus
on black-box attacks. These attacks are so-named since no informa-
tion about the model-under-test (MUT) such as its internal weights
or structure are assumed. Black-box attacks are advantageous be-
cause they do not require a deep understanding of MUTs; instead,
only the ability to issue queries and observe results is needed.
However, as the search process is unguided by model informa-
tion, black-box techniques can fail to discover latent vulnerabilities
that a white-box adversarial search such as projected gradient de-
scent (PGD) [44] might otherwise uncover. In this sense, the results
of our methodology should be considered a lower bound on the
vulnerability of MUTs to which it is applied.
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Figure 1: Overview of the NBA function boundary detection vulnerability search procedure. In the first phase, benchmark
source code S is compiled by an array of compiler toolchains and configurations (T, C) resulting in a benchmark binary corpus
B. Function boundary ground truth F is extracted from B. In parallel, the set of models-under-test M is trained and evaluated
on one or more training and inference splits of B. Finally, misclassifications in the form of false positives and negatives are
collected by comparing F, ,,cm Fn,. Heavy hitters are identified and injected into B for attack evaluation.

We define a general black-box vulnerability search procedure
with the goal of uncovering and exploiting function boundary mis-
classifications when performing inference on binary programs. The
search proceeds in several phases: (i) input generation, (ii) ground
truth generation, (iii) training and inference, and (iv) misclassifica-
tion analysis.

Input Generation. In the first phase, we gather a corpus of
benchmark program source code S. Each benchmark is compiled
by an array of compiler toolchains T, each of which is equipped
with an attack configuration C consisting of a set of compiler flags
and code transformations. Given n = |T| compilers, we obtain a
benchmark binary corpus B consisting of n separate compilations
of S with each toolchain and attack configuration tuple (T, C).

Ground Truth Generation. Each configuration ensures that
debugging information is generated while simultaneously prevent-
ing compiled binaries from being stripped of symbol information.
Thus, we can post-process each binary and use these sources of
information to construct a ground truth mapping F (1); that is, a
function that labels each byte of code in each binary as to whether
it is a function start, a function end, or neither.

MUT Training and Inference. In parallel, we split B into
training and inference sets. The MUTs M are individually trained
and evaluated on these sets. The result for each MUT m € M is an
inferred mapping Fy,. Since we extracted a ground truth labeling
F in the previous phase, we can directly compare Fm and F to
identify misclassifications in the form of false positives E;, and
false negatives E,,, where

Eh ={b,i} st.VbeB,ic|b| F(b,i)=N A Fy(b,i) € {S,E}
)

E,, ={b,i} st.VbeB,ic|b|l F(bi)e{S,E}AFn(bi)=N
(©)

Misclassification Analysis. In the last phase, for each MUT
we process its misclassification sets E;, E;,, to identify attack inputs
Ap, that can reliably produce function boundary misclassifications
in arbitrary binary programs. To do so, we rank-order misclassifi-
cations for each model by highest incidence to lowest. The ranked
attack inputs then serve as seeds for an adversarial search, where

they are each injected in turn into targeted functions of B to pro-
duce a mutated corpus By,. A separate attack validation round is
then carried out by having the MUT m perform inference on By, to
confirm that the intended misclassifications are replicated in the
targeted functions.

3.1 Attack Techniques and Threat Models

The vulnerability search procedure relies upon collecting a set of
attack techniques in the form of compiler flags and code trans-
formations. Each of these techniques specifically targets function
prologues and epilogues. A function prologue is responsible for
(i) saving the contents of any registers that it uses and that a caller
is responsible for preserving under a given calling convention;
and, (ii) allocating space on the current thread’s stack for any lo-
cal variables the function uses. An epilogue, on the other hand,
is responsible for reversing the effects of the prologue as well as
(optionally) returning a value to the caller. Our attack techniques
modify function prologues and epilogues because neural function
boundary detection models focus on bytes or instructions that com-
prise (or are adjacent to) these code regions.

However, while each attack technique targets the same code
regions, not all techniques are created equally. Some attacks are
inadvertent; that is, an unintended deficiency of the data represen-
tation, network architecture, or training set causes the model to
misclassify a benign input during inference. Other attacks, however,
are inherently adversarial. In this case, an adversary intentionally
transforms their input to actively attack the MUT. In this case,
the only restriction is that the transformation must preserve the
intended functionality of the attack.

Inadvertent Threat Model. Inadvertent attacks represent a
weak threat model, in that there is no active adversary and, instead,
the MUT or training set is suboptimal with respect to a “naturally-
occurring” binary that has been emitted by a standard compiler
toolchain on benign code. While this threat model is weaker, Ren et
al. show that in practice “adversaries explore non-default compiler
settings to amplify malware differences” [59].

Adversarial Threat Model. In this threat model, no assump-
tions are made about how the binary was produced. Binaries can
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be obfuscated or encrypted, and in such cases must be unpacked
in a malware sandbox prior to use of a static analysis on an unob-
fuscated dropped or in-memory executable image, as is common
industry practice [75].

We classify the attack techniques employed by the search pro-
cedure according to whether they are inadvertent or adversarial.
The criterion we use for this classification is whether or not the
code resulting from applying a technique can be emitted by an
unmodified compiler toolchain given a legal configuration.

An overview of the vulnerability search procedure is shown
in Figure 1. In the following, we describe each inadvertent and
adversarial attack technique.

3.2 Inadvertent Attacks

Inadvertent attacks result from misclassified binary code emitted
by a benign compiler toolchain under any possible configuration.
However, systematically exploring the entire space of possible com-
piler configurations in terms of combinations of compiler flags is
daunting, to put it lightly. To illustrate, clang v13.1.6 (armé64-apple-
darwin21.4.0) advertises 1013 distinct command-line options in its
default help message when invoked using clang —help. Thus, if
we denote the set of possible options as C, a rough estimate of num-
ber of possible combinations is |P (C)| = 2!913.3 An exhaustive
exploration of this space is clearly intractable in practice, and so
we use domain knowledge to select a small number of compiler
options that we conjecture will have an effect on function boundary
prediction. We describe each of these classes of options below.*

Stack Protector. “Stack protector” is gec and clang’s modern
name for canary/cookie-based anti-stack smashing defenses [18].
This defense injects an unpredictable guard value onto the stack as
part of the function prologue. In an epilogue, the injected copy of
the guard is compared to a global copy. If the values do not match,
then a stack smashing attack is assumed to have occurred and
the program is terminated before the attacker can gain control of
execution via, e.g., a corrupted return address. Otherwise, execution
continues as normal.

The defense relies upon several assumptions - for instance, that
the guard value contains carries sufficient entropy to make guessing
infeasible, that the guard value is not leaked to the adversary, that
the global copy of the guard cannot be modified by the adversary,
and that all stack-allocated data that can be leveraged to hijack
code execution is protected by the stack guard. The defense can
in fact take several forms depending on the compiler version and
particular flags used, such as: whether all functions are protected
by a guard or rather only those that allocate a buffer on the stack;
whether some or all stack variables are protected by the guard,
which can involve variable reordering; and, the offset of the global
guard copy.

3This is a loose estimate. It is likely that some combinations are invalid, which would
lead to an overcount. However, some options are not boolean flags but rather take a
value as an argument, which would lead to an undercount.

4We also note that we do not claim these classes as exhaustive. Indeed, we are aware of
other compiler configurations and code transformations that would be interesting to
explore. Unfortunately, due to time constraints we have not yet fully evaluated them
and so elide them here.
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Our inclusion of these compiler options is based on the obser-
vation that stack guard injection and verification requires modi-
fications to function prologues and epilogues. NBAs that rely on
particular byte or instruction sequences comprising prologues and
epilogues for function boundary detection might thus be confused
by these modifications. Listing 4 (§A) illustrates a typical example.

Stack Clash Protection. Stack clash vulnerabilities arise when
an attacker is able to grow either the stack or another memory re-
gion such that the two memory segments overlap [56]. While OS
kernels such as Linux can inject a guard page to separate the stack
from other regions, prior research has shown that guard pages
are nevertheless circumventable. Thus, modern compilers include
options to enable stack clash mitigations in emitted code. The most
popular form of this mitigation centers on breaking large stack
allocations into page-sized chunks, and either implicitly or explic-
itly probing each chunk to ensure that it has not clashed with an
existing memory allocation [38].

The impetus for our inclusion of stack clash protector compiler
options as an attack technique is the modified allocation pattern
for large stack buffers in function prologues and the requirement
for explicit probe injection if the compiler deems it necessary. List-
ing 5 (§A) illustrates one form of these modifications to function
prologues (epilogues are not affected in this case).

Control Flow Integrity. Control flow integrity (CFI) is a gen-
eral software hardening approach based on the principle that code
must execute control transfers if and only if those transfers were
intended by the programmer [1]. Forward-edge CFI in particular
has become a standard feature of production compilers like clang
and gec [67], efficiently protecting indirect calls and jumps through
computed pointers of various forms. Architectural support for a
weak form of return-edge CFI has also become available in recent
x86/x86-64 processor generations in the form of Intel CET [63].
While forward-edge CFI checks such as IFCC [67] are typically
inserted at call sites, Intel CET enforcement depends on instrument-
ing valid indirect branch targets with special instructions (endbr32,
endbr64) as well as ensuring that these instructions do not acciden-
tally appear anywhere else in an executable memory region. Since
this instrumentation can result in modified function prologues, we
include CFI enforcement options as a separate attack technique.
Listing 6 (§A) illustrates function prologue modifications resulting
from Intel CET and indirect branch tracking enforcement.

SafeStack. SafeStack is another stack-based buffer overflow
defense developed as part of code-pointer integrity (CPI) [37] that
relies upon separating stacks into safe and unsafe stacks. Security-
relevant data such as return addresses, register spills, and local
variables are stored on the safe stack. Accesses to the safe stack are
always checked via runtime instrumentation for safety. All other
stack-allocated data is stored on the unsafe stack, ensuring that
buffer overflows cannot corrupt any safe stack data.

Since the compiler must emit code to manipulate two stacks
when enforcing SafeStack, this introduces modifications to both
the prologue and epilogue of affected functions. Thus, we include
SafeStack as a distinct attack technique. An example of SafeStack
prologue and epilogue modifications is shown in Listing 7 (§A).

Function Alignment. Compilers provide a number of options
to control the alignment of functions in memory. Aligning func-
tions to particular address boundaries can be advantageous from
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1 f_original:

2 push rbp ; save caller fp

3 mov rbp, rsp ; set fp

4 ; function body. ..

5 pop rbp ; restore caller fp

6 ret ; return to caller

1 f_injected:

2 jmp .entry ; jump over attack sequence
3 mov eax, 0x89485590 ; attack sequence as immediate
4 .entry:

5 nop ; prologue nop sequence tail
6 push rbp ; save caller fp

7 mov rbp, rsp ; set fp

8 ; function body. ..

9 pop rbp ; restore caller fp

10 ret ; return to caller

11 add word [rcx], al ; adversarial insertion

12 leave ; adversarial insertion

13 ret ; adversarial insertion

14 nop ; epilogue nop sequence tail

Listing 2: Adversarial attack sequence injection example us-
ing compiler-emitted NOP sequences (additions in green). In
the prologue, a relative jump is injected to bypass an instruc-
tion containing an attack sequence encoded as an immediate
value. In the epilogue, an attack sequence is directly injected
verbatim; it will not be executed due to the unconditional
return at line 10.

a performance perspective for architectural reasons, and optimal
alignment varies depending on the target architecture. On the other
hand, compilers can also be instructed to eschew optional alignment
constraints in favor of optimizing for size. In this case, functions
will be tightly packed and not conform to an alignment scheme.

The reason we include function alignment as an attack technique
is two-fold. First, tightly packing functions will remove any inter-
stitial padding between adjacent functions, effectively creating a
large change in instruction bytes preceding function prologues and
succeeding function epilogues. Second, varying the requested align-
ment will cause compilers to emit different sequences of padding
instructions. This leads to a similar, albeit weaker, change in pro-
logue and epilogue-adjacent instructions. An example of this phe-
nomenon is shown in Listing 8 (§A).

3.3 Adversarial Attacks

In addition to the inadvertent attack techniques we just described,
we also separately consider adversarial attack techniques. Consis-
tent with our two-tier threat model introduced in §3.1, adversarial
attacks go beyond the inadvertent evasive or false positive-inducing
inputs that can be emitted by common compiler toolchains and
configurations. Instead, under this stronger threat model an adver-
sary can use arbitrary techniques to craft a binary that will induce
misclassifications by a function boundary detection NBA.

The possession of the power to arbitrarily modify binaries does
not itself imply the ability to easily discover input byte and instruc-
tion sequences that produce misclassifications. However, we find
that an unguided search over bounded byte sequences is wholly
sufficient to quickly find adversarial inputs that produce significant
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numbers of false positive or false negative misclassifications in the
state of the art.

In particular, we explore the simple technique of injecting ar-
bitrary byte sequences into function epilogues for this purpose.
In principle, one could use a binary rewriting framework [71] to
perform the injections on arbitrary in a functionality-preserving
manner - e.g., that makes the necessary modifications to account
for the increased size of the code sections of the mutated binary.
However, we take the comparatively simpler approach of recom-
piling the binary corpus with a compiler configuration that causes
NOP sequences of a desired length to be emitted in all epilogues.
This renders it straightforward to inject the necessary code to per-
form attack validation in a length-preserving manner via purely
local modifications.

We employ and evaluate two forms of adversarial injection in
terms of content: (i) injecting a relative jump over a mov instruction
that loads a register with the attack sequence as an immediate value,
and (ii) injecting the attack sequence as-is into a function epilogue
after a return instruction. Due to the unconditional jump or return
that prefaces each form of the injected attack sequence, there is
no realistic possibility that the attack sequence will be executed in
either form. Listing 2 presents an example of this technique in action.
We note that while the injected code sequences could perhaps be
identified as dead code and removed, the ability to do this reliably
degrades quickly as more complicated instruction sequences are
injected (up to the level of an opaque predicate). We revisit this
point in §6; however, we do not believe it to be straightforward
to identify and remove attack sequences injected by a determined
adversary.

4 IMPLEMENTATION

The inadvertent attack search is implemented using an augmented
version of BinKit [36]. This framework provides scripts to repro-
ducibly build a number of independent compiler toolchains (i.e.,
several versions of gcc and clang) as well as to download and com-
pile numerous open source software packages using a variety of
configurations. We modified BinKit to support more compiler ver-
sions and configurations, and discuss the resulting experimental
setup and data in §5.

Our adversarial attacks are implemented via a binary rewriting
framework [2] that in turn is based upon open source code drawn
from pyelftools [11] and Capstone [15]. The framework operates
on all ISAs present in BinKit.

We consider the binary rewriting procedure safe since it simply
overwrites a number of NOP instructions placed in function epi-
logues by the compiler using the -fpatchable-function-entry
option. This preserves the existing binary layout in terms of address-
ing, and thus all jump and call targets remain valid. Additionally,
all injected code is protected by jumps or pre-existing return in-
structions that guard their execution. Nevertheless, we manually
spot-checked the rewriting procedure as well as ran existing test
suites on modified binaries when available.

5 EVALUATION

In this section, we present the results of our evaluation of two
representative state-of-the-art neural binary analyses for function
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Table 2: BinKit corpus.

Dataset Binaries Functions Packages Compilers Optimizations
Normal 14,480 4,273,807 53 13 6
SizeOpt 2,115 575,143 51 9 1
Nolnline 8,460 2,912,548 51 9 4
PIE 4,500 1,868,470 46 9 4
Obfuscate 4,700 1,351,779 51 4 5
CFL 3,800 1,133,310 52 3 5
ASE18 11,254 1,793,278 6 13 5

boundary detection. Our aim in conducting this evaluation was to
answer the following research questions.

(RQ1) Are NBAs susceptible to inadvertent attacks?

(RQ2) Are NBAs susceptible to adversarial attacks?

(RQ3) Can an adversary systematically leverage inadvertent and
adversarial attacks?

(RQ4) Can inadvertent attacks be mitigated with larger, more rep-
resentative training sets?

(RQ5) Can adversarial attacks be mitigated by including adversarial
examples during training?

5.1 Experimental Setup

Table 3: Results per dataset. For each dataset and metric (pre-
cision, recall, F1), the maximum value is highlighted green
while the minimum value is highlighted red. Large standard
deviations (SD) are set in bold.

Precision Recall F1
Dataset Tool Mean (SD) Mean (SD) Mean (SD)
Normal IDA 1.000 (0.002)  0.844 (0.144)  0.908 (0.090)

XDA 0.989 (0.019)
DeepDi  0.976 (0.045)

SizeOpt IDA 1.000 (0.001)
XDA 0.977 (0.020)
DeepDi  0.987 (0.032)

Nolnline DA 1.000 (0.002)
XDA 0.991 (0.020)
DeepDi  0.980 (0.041)

0.965 (0.052)
0.932 (0.057)

0.754 (0.155)
0.900 (0.080)
0.870 (0.061)  0.923 (0.040)

(

0.848 (0.156)  0.909 (0.099)
0.954 (0.049)  0.971 (0.031)
0.945 (0.045)  0.961 (0.037)

0.954 (0.059)
0.978 (0.034)
0.946 (0.053)

0.909 (0.082)
0.946 (0.050)
0.950 (0.034)

0.880 (0.122)
0.923 (0.075)

0.976 (0.034)
0.952 (0.040)

0.851 (0.103)
0.935 (0.050)

PIE IDA 1.000 (0.003)
XDA 0.988 (0.022)
DeepDi  0.973 (0.058)

Obfuscate IDA 1.000 (0.001)
XDA 0.920 (0.085)
DeepDi 0.973 (0.040)

CFI IDA 1.000 (0.002)
XDA 0.975 (0.031)
DeepDi  0.968 (0.047)  0.880 (0.073)  0.919 (0.049)

ASE18 IDA 1.000 (0.001) 0.832 (0.117) 0.904 (0.069)
XDA scores omitted: ASE18 was the training dataset
DeepDi  0.977 (0.025)  0.957 (0.021)  0.966 (0.018)

Totals IDA 1.000 (0.002)  0.843 (0.145)  0.907 (0.092)
XDA 0.982 (0.040)  0.959 (0.062)  0.969 (0.044)
DeepDi 0976 (0.042)  0.931(0.058)  0.951 (0.041)

0.918 (0.097)
0.969 (0.050)
0.926 (0.064)

0.843 (0.132)
0.978 (0.034)
0.932 (0.055)

0.806 (0.183)
0.883 (0.111)

Models Under Test. We selected the commercial standard
IDA Pro v7.7 as a baseline deterministic disassembler. As exemplars
of state-of-the-art neural binary analyses for function boundary
detection, we selected XDA [54] and DeepDi [76], both of which
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we previously introduced in §2. XDA was selected for evaluation
because its design is heavily inspired by Transformer [68], and its
implementation on top of Fairseq’s implementation of BERT [21]
reflects this. As such, it is a perfect example of an NLP-based ap-
proach to neural function boundary detection. DeepDi, on the other
hand, was selected as an example of a function boundary detec-
tion system that incorporates some semantic information in the
form of a graph model of instruction dependencies. Finally, both
of these systems publish a public artifact for evaluation: source
code in the case of XDA [35], and a binary distribution in the case
of DeepDi [20]. We thank the authors of these systems for their
commitment to open science.

Datasets. To support reproducibility, we built our evaluation
upon datasets generated for previous binary analysis evaluations. In
particular, we started with the BinKit corpus [36] which is based on
all available GNU software packages. BinKit includes 53 software
packages compiled by five versions of GCC (v4.9.4, v5.5.0, v6.4.0,
v7.3.0, v8.2.0) and four versions of clang (v4.0, v5.0, v6.0, v7.0). The
original corpus is composed of several distinct datasets that exercise
specific compiler options: -fno-inline, -fPIE, -Os, and -f1to. We
expanded the corpus to include more recent versions of GCC and
Clang (GCC v.9.4.0, GCC v11.2.0, Clang v9.0, Clang v13.0) and a
new dataset (CFI). The CFI dataset exercises modern control-flow
integrity compiler options discussed in §3.2 via the GCC compiler
flag -fcf-protection=full and the Clang compiler flag -fsani-
tize=cfi. An overview of the corpus and individual datasets is
presented in Table 2.

Although the BinKit corpus includes a substantial combination
of compiler versions, optimization levels, and specific flags, one
cannot assume that compiler options are completely isolated for
any particular binary or dataset. For example, one might assume the
Nolnline dataset would not include code that had been compiled
with the flag -fgnu89-inline, which causes inlining, or that a
binary compiled at the 00 optimization level would not include
code compiled at a different optimization level. Unfortunately, this
is not the case due to existence of compiler-generated code and
code that is statically linked in from compiler support libraries. We
found that binaries compiled with -fstack-protector-strong
included code compiled with -fno-stack-protector, although
the presence of the latter was dominated by the former. In some
cases, such as the xorriso binary with 3000 functions, compiler
support code is dominated by the software library code, and thus
the presence of code compiled with different flags would have a
minor impact on training and evaluation. On the other hand, a
software library like coreutils is composed of many small utilities
where the ratio of compiler support code to library code is much
less. We do not believe that this phenomenon has a significant
impact on our results, but we do note that it is non-trivial to ensure
uniform compiler configurations on absolutely all code in each
dataset and that we did not attempt to achieve this.

Metrics. We report precision, recall, and the balanced F-score
(F1 score) with the standard definitions. In Table 3, we report the
mean and standard deviation of the precision, recall, and F; score
as a statistical summary calculated per binary in each dataset. We
choose to report mean and standard deviation because performance
within a particular dataset can exhibit high variance, as we discuss
later.



Black-box Attacks Against Neural Binary Function Detection

Computational Resources. All experiments were performed
on a dedicated server with a 64 core AMD Ryzen 3995WX CPU @
4.3GHz, three RTX A6000 GPUs, 1TB memory, and a 4TB SSD.

5.2 ROQ1: Inadvertent Attacks

In our first experiment, we subjected XDA and DeepDi to our
augmented version of BinKit to evaluate their resilience to the
full set of inadvertent evasions described in §3.2. We additionally
include IDA Pro in this experiment as a baseline representing the
state of the art in deterministic function boundary detection. Table 3
presents summary statistics in terms of precision, recall, and F1
score, along with standard deviation for each metric, broken out by
the individual datasets comprising BinKit.

From the data, IDA Pro consistently performs best with respect
to precision, with little variance. XDA, however, dominates with
respect to recall and F1 score. DeepDi produces F1 scores that are
very close to the performance of XDA and takes the top spot for
exactly one dataset, Obfuscate. There is also clearly some variance
across all metrics. However, in this respect the summary statistics
do not tell the full story.

Figure 2 presents a series of precision-recall plots for each system.
Each point represents one binary, colored according to membership
in each of BinKit’s constituent datasets. In each plot, the optimal
point is the upper-right, indicating perfect precision (all detections
were true positives) and recall (all functions were detected). Points
towards the x-axis indicate lower precision and thus a higher pro-
portion of false positives. Points towards the y-axis (left) indicate
lower recall and thus a higher proportion of false negatives.

One can immediately observe a marked difference between the
operating characteristics of the deterministic baseline represented
by IDA Pro and the NBA systems. IDA Pro consistently achieves
near perfect precision - i.e., when it detects a function, it is highly
likely to be a true positive. However, it is prone in some cases to
unreported functions. In the worst case, IDA Pro dips below 0.4
recall.

Both XDA and DeepDi, however, exhibit much stronger variance
in both precision and recall. XDA in particular presents seeming
clusters, i.e., precision-recall that correlates with individual datasets.
XDA performs particularly poorly on the CFI dataset, colored in
red. Other datasets are biased towards either precision or recall
failures. For instance, Obfuscate, colored in purple, tends towards
lower recall and false negatives. SizeOpt failures, in contrast, are
biased towards lower precision and false positives.

In comparative terms, XDA performs slightly better across the
board than XDA and both exhibit better recall than IDA Pro on
this data. However, the scatterplot makes it clear that there is a
sizable number of outliers in both precision and recall. Thus, we
investigated a sample of these outliers.

One such outlier point is shown in Listing 3. On the gcal-4.1
benchmark, DeepDi issued >3000 distinct false positives from multi-
ple occurrences of a single instruction. The instruction, highlighted
in red, subtracts 8 bytes from the stack pointer. This is an operation
that is often performed in a function prologue to allocate space
for local variables on the stack. However, this particular example
occurs when marshalling arguments to a call to fprintf in gcal’s
main function. The reason this occurs is because this particular
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1 sub rsp, 0x8 align stack pointer

2 push ri3 ; push arg7
3 mov r9, ri2 ; set argb
4 mov r8, rbp ; set arg5h
5 mov ecx, 0x4972ec ; set arg4
6 mov rdx, rbx ; set arg3
7 mov rsi, rax ; set arg2
8 mov rdi, stderr ; set argl
9 mov eax, 0x0 ; zero rax
10 call  fprintf ; invoke fprintf

Listing 3: One example of a single instruction that causes
DeepDi to issue >3000 false positives for the gcal-4.1 bench-
mark.

call to fprintf, a variadic function, has more than six arguments.
The SysV ABI dictates that the first six arguments are passed in
registers, while any further arguments are passed on the stack.
Stack arguments, however, must be aligned to a 16-byte boundary.
This causes the compiler, which was configured to operate at 00 in
this case, to directly adjust the stack pointer prior to pushing the
seventh argument to fprintf. It appears that the DeepDi model
we evaluated never observed this particular pattern in its training
set.

One can argue that if the failures we observe are restricted to
accidental outliers, then their overall impact should be low. Unfortu-
nately, as we demonstrate next, these inadvertent misclassifications
can be systematically exploited by an adversary to build effective
adversarial attacks.

5.3 RQ2: Adversarial Attacks

To evaluate adversarial attack efficacy, we recompiled the Normal
dataset with different optimization options (00, 03, Os) and the
-fpatchable-function-entry=4,4 flag which inserts 4 NOP in-
structions after the original function epilogue. The effects of this
on F1 score are presented in Figure 3.

Both XDA and DeepDi successfully handle the addition of sim-
ple “NOP sled” insertion, preserving high F1 scores. Unfortunately,
when adversarial mutations are introduced following the methodol-
ogy described in §3.3, both systems diverge significantly from their
published accuracy. Interestingly, we observe that XDA is more re-
silient to epilogue mutation under the 00 optimization level versus
03 and Os. DeepDi’s performance is degraded for all optimization
levels, with median F1 scores well below 0.25 at all optimization
levels. IDA Pro, however, is largely unaffected by epilogue muta-
tions as evidenced by the near-identical F1 distributions across both
datasets.

5.4 RQ3: Systematic Attacks

Our results to this point highlight that both XDA and DeepDi are
vulnerable to seemingly simple adversarial byte sequence injec-
tion, causing them to misclassify significant portions of the func-
tions present using the same sequence across all binaries with no
attempt to adapt them to a given program. Unfortunately, dur-
ing our evaluation we unearthed several cases where the patterns
used were particularly effective, leading to almost complete eva-
sion. Specifically, XDA only managed to recover 36 out of the 145
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Precision vs. Recall on the BinKit Dataset
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Figure 2: Overview of precision versus recall per binary from the BinKit corpus. IDA Pro consistently performs best with
respect to precision, with little variance. XDA, however, dominates with respect to recall. It also wins out on F1 score in all but
one case, Obfuscate, where DeepDi is best. Variance in these metrics is somewhat apparent, but better observed in Figure 3.
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Figure 3: Effects of adversarial attacks on F1 score. We
recompile the Normal dataset with the compiler option
-fpatchable-function-entry=4, 4, inserting 4 NOP instruc-
tions after each function under different optimization levels.
Both XDA and DeepDi are resilient to the simple addition of
NOP sequences as shown in the baseline experiments. How-
ever, F1 scores exhibit significant degradation when injecting
adversarial patterns into the NOP regions. IDA Pro is unaf-
fected by epilogue mutation evasions.

ground truth functions contained in gnudos-1.11.4_gcc-9.4.0_-
x86_64_0s_prime.elf. As another example, DeepDi reported only
four (4) out of a total of 6,679 ground truth functions present in
gsl-2.5_gcc-9.4.0_x86_64_00_libgsl.so0.23.1.0.elf.In the
other direction, DeepDi reported reported 3193 out of the 1104
ground truth functions present in gcal-4.1_gcc-8.2.0_x86_64-
_01_gcal.elf.
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We believe that these cases are due to these particular adversarial
patterns being especially effective on the characteristic layout of
those programs. Furthermore, our adversarial attacks could poten-
tially be improved by targeting them for particular binaries, paving
the way for a novel, insidious way to attack NBAs relying only on
static information. As is evident in the DeepDi case, such adver-
sarially mutated binaries would be virtually invisible to detectors
that relied on a vulnerable NBA for as part of its analysis pipeline.
While the targeted attacks we speculate about here are beyond the
scope of this work, we believe that it is a promising line of inquiry
and plan to explore it as future work.

5.5 RQ4: Expanded Training Sets

To investigate whether inadvertent attacks can be mitigated with
additional training, we next conducted a step-wise experiment with
XDA.” For the inadvertent samples, we chose to evaluate XDA with
the CFI dataset as it was the most difficult dataset to classify for
all three systems under evaluation. Starting with a very limited
subset of the ASE18 dataset, we trained XDA with increasingly
more diversity in the number of compilers, compiler versions, and
compiler options. The results are shown in Table 4. With only one
version of GCC and four optimization levels in the training data,
XDA achieved a reasonable F1 score of 0.855 on the CFI dataset. By
adding four versions of Clang and GCC, a modest improvement in
F1 score obtained (0.865). Notably, adding Clang-compiled binaries
to the training set reduced XDA’s performance.

We then expanded the original ASE18 dataset by including newer
compilers, namely two versions of Clang and GCC, which increased
the F1 score to 0.923. Finally, by adding the Os optimization level,
XDA achieved a score of 0.924, which is better than both DeepDi
and IDA Pro. This demonstrates that XDA’s performance can in fact
be improved by expanding the training dataset — which is expected
— but also that XDA is also quite sensitive to compiler versions and
options present in the training data.

SWe are restricted to XDA for this and the following experiment since DeepDi is
distributed as a binary object. Thus, we do not have the ability to train a new DeepDi
model.
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Table 4: Improving resilience through training.

Data # GCC, Eval
ID Base (+added) # Files Size Time # Clang Dataset F1
0 GCC-6.4.0 772 118M  04h 1 CFI 0.855
1 Clang 3,088 461M  1.7h 4 CFI 0.575
2 GCC 3,860 586M  2.2h 5 CFI 0.857
3 original 6,948 1,046M 39h 5 4 CFI 0.865
4 3 +Clang-new 6,988 1,153M 43h 5 6 CFL 0.852
5 3 +GCC-new 6,988 1,148M  43h 7 4 CFL 0.913
6 3 +both-new 7,028 1,256M  4.7h 7 6 CFI 0.923
7 6+0s 7,058 1,312M  49h 7 6 CFI 0.924
8 7 +nop4 7,133 1,499M  5.6h 7 6 CFI 0.935
9 8 +evade4 7,208 1,685M  6.4h 7 6 CFI 0.810
7 6+0s Evade-ep4 0.198
8 7 +nop4 Evade-ep4 0.338
9 8 +evade4 Evade-ep4 0.938

5.6 RQ5: Adversarial Training

In the final experiment, we evaluate whether MUTs can be made
resilient to the adversarial attacks we describe by adopting adver-
sarial training. In order to train XDA on these crafted attacks, we
created a new dataset based on the NOP dataset described in §5.3. In
this dataset, we replaced each 4-byte NOP epilogue with a randomly
chosen evasion pattern that is also a valid 4-byte x86 instruction
sequence. We then fine-tuned XDA on this expanded dataset and
evaluated on both the CFI and Evade-ep4 datasets. With the new
model, XDA’s performance on the Evade-ep4 dataset improved from
0.198 to 0.938, a significant improvement. Unfortunately, XDA’s
performance on the CFI dataset was also degraded from 0.924 to
0.810. This suggests that while adversarial training can partially
mitigate evasion, it also comes at a significant cost in accuracy for
benign samples.

In addition, it is also unclear whether training on adversarial
examples represents a trustworthy mitigation. To illustrate, we per-
formed an additional round of adversarial attack search to demon-
strate the inherent limitation of training against adversarial tech-
niques. Repeating our 4-byte evasion search, we were able to reduce
XDA’s performance to 0.488 (STD 0.317) when trained on the Evade-
ep4 dataset. Additionally, we studied two alternative attacks using
a 3-byte and 8-byte NOP dataset, producing F1 scores of 0.427 and
0.430 respectively. Thus, while one would hope that training on
adversarial examples would produce a model that is robust against
many different evasion patterns, our experiments show that this is
unlikely to be the case as we were able to degrade XDA'’s perfor-
mance again without significant effort.

6 DISCUSSION

Black-box attacks are powerful enough. As is hopefully clear
from our evaluation, black-box attacks are sufficiently powerful
to discover numerous false positive and false negative-inducing
inputs to current generation function boundary detection NBAs.
Sophisticated white-box searches for adversarial examples that rely
on gradient descent might well find more attacks. However, it is
unclear how one might adapt existing searches while preserving
the functionality of the mutated binary due to the discrete problem
space. Nevertheless, this is an interesting direction to explore.
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Inadvertent attacks break pure NLP-based systems. As
should also be clear from the evaluation, inadvertent attacks sig-
nificantly degrade function boundary detection approaches that
directly reuse NLP embeddings and models as XDA does. Another
way to view this finding is that such approaches do not generalize
well to examples that are not observed during training. In retrospect,
this naturally follows from our conjecture that syntactic represen-
tations are not a sound basis for binary analysis where semantics
is virtually always what actually matters. One could argue that
simply including misclassified examples in the training set is suffi-
cient mitigation, and there is likely some truth to that. However,
in our opinion a realistic counterargument is that anticipating and
training on a sufficiently large permutation of compilers, compiler
versions, and compiler configurations is combinatorially difficult.
To make matters worse, that mitigation does not take adversarial
attacks into account.

Domain-specific embeddings and graph models are a mar-
ginal improvement. The evaluation shows that DeepDi’s domain-
specific embedding and use of R-GCN to model instruction depen-
dencies improves its resilience to inadvertent attacks. This is clear
evidence that incorporating even a small bit of the latent semantic
information present in an instruction stream has utility. However,
this improvement is tempered by DeepDi’s performance against
adversarial examples, motivating our next observation.

Focus on semantics instead of syntax. The overarching con-
clusion we draw from the evaluation is that syntactic representa-
tions are unlikely to be a reliable basis for binary analyses. In a
way, this is unsurprising, since syntactic approaches for attack de-
tection such as signature-based IDS and first-generation anti-virus
based on pattern matching against byte sequences were criticized
for similar deficiencies long ago. While these techniques can of
course be useful, they cannot be relied upon in isolation. Instead,
mirroring attack detection’s move from static pattern matching to
dynamic behavioral analysis more than a decade ago, we argue that
future work in this space should emphasize semantics over syntax
to avoid similar pitfalls.

Evaluation quality is important. In tandem with the seman-
tics question, we believe it is crucial that the research community
hews to a standard of evaluations on large, representative, public
datasets. This data should include a range of programs with varying
functionality, as well as different compilers, compiler versions, and
compiler configurations. As shown in our experiments, testing on
a more comprehensive dataset such as BinKit [36] over smaller,
less representative datasets in the original papers can help identify
areas of improvement for underlying models, such as lacking under-
standing of semantic isomorphisms. Finally, we believe that these
benchmark corpora should include adversarial examples generated
using techniques such as those described herein to directly test
whether future work is susceptible to similar attacks. This inclusion
should both to increase robustness in possible security related use
cases and to help the model learn patterns of adversarial perturba-
tion that exploit syntactic versus semantic model understanding.
A substantial bonus in following such a standard would be to ease
reproducibility and comparative evaluation.

Detecting adversarial code is not easy. Finally, we readily
acknowledge that the adversarial code we inject as part of our
methodology and evaluation is likely to be easy to detect and strip
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before performing classification. However, we believe that focusing
on this is misguided. Code obfuscation is well within the threat
model of many contexts in which binary analyses such as function
boundary detection operate under. In that light, it is reasonable
to suspect that if an adversary wished to do so, they could easily
obfuscate the fact that the injected code will never be executed
by relying on computed control transfers and opaque predicates.
Indeed, if a defender was able to perfectly identify dead code, then
a large part of the debloating problem would be perfectly solved
which - to our knowledge - is not the case. Instead, as with so many
other problems in this space, detecting and removing adversarial
code reduces to Rice’s Theorem [60]. Thus, we believe it is safe to
conclude that this is not likely to be a fruitful research direction.

7 RELATED WORK

Neural binary analysis. Binary analysis is a long-studied and
expansive research area. Disassembly is a fundamental task that
traditionally has been solved using deterministic algorithms that
can be broadly classified as either linear disassembly (provided
by tools like objdump from GNU binutils) or recursive descent
disassembly (provided by tools such as IDA Pro [29], Ghidra [50],
or Binary Ninja [69]). These tools typically also incorporate algo-
rithms for function boundary detection using some combination of
symbol table information, debug information, and pattern-based
heuristics. Work such as ByteWeight [9] specifically investigated
learning-based approaches for performing function boundary de-
tection. Other common binary analysis tasks include measuring
similarity between snippets of binary code [32], recovering source
code types [40], and decompilation [62, 73]. In recent years, ap-
plying deep learning techniques to binary analysis problems has
become a popular topic of study due to the success of DNNs in
solving image and text processing tasks, among others. Shin et
al. [64] were the first to apply a DNN to a binary analysis problem;
in this case, detecting function boundaries using a bi-directional
recurrent neural network (BiRNN). The strategy of repurposing
embeddings and model architectures originally developed to solve
NLP or image processing problems became de rigeur in a way.
Numerous NBAs for disassembly [54, 76], function boundary de-
tection [17, 54, 76], value set analysis [31, 42], static code similar-
ity [22, 41, 42, 46, 72, 74, 77, 78], decompilation [25], and malware
analysis [3, 33, 70] directly use embeddings (e.g., word2vec [47], PV-
DM [39]) or models (e.g, RNN, CNN, Transformer [68], BERT [21])
developed for the NLP or image problem domains. One of the con-
clusions we draw in this paper is that while it is tempting to build
on techniques that have been successful in other areas, binary anal-
ysis is a strikingly different research area with a different threat
model and much stronger accuracy requirements for downstream
tasks (see the discussion in §6). For NBAs to be resilient against
adversaries that seek to evade or confuse binary analyses, choices
of embeddings and model architectures should reflect these require-
ments.

We are not the first to independently evaluate NBA systems
for other tasks. Kim et al. [36] studied NBAs that perform static
similarity detection using a large dataset of programs compiled
with a variety of toolchains and compiler options called BinKit;
we build on BinKit to carry out our own evaluation. Using this
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dataset and a simple baseline similarity detector called TikNib, they
show that NBAs do not necessarily outperform simpler, explainable
methods such as the one implemented by TikNib. Marcelli et al. [45]
performed a similar study also focused on static similarity detection
NBAs, and show that published results do not necessarily hold when
the systems-under-test are trained and evaluated on larger, more
representative datasets. Finally, Lucas et al. showed that DNNs
used for static malware detection on binary programs are prone to
adversarial attacks [43]. This work lies in contrast to our own not
only in the specific problem domain but also in its use of traditional
adversarial ML techniques - i.e., white-box gradient descent or
black-box hill climbing - to find evading transformations.

Adversarial machine learning. Substantial research has stud-
ied the problem of crafting adversarial examples [13, 53]. Tradition-
ally, this research has been conducted on semi-continuous spaces,
here defined as when adjacent values carry semantic information,
e.g., pixel values for image classification. In these approaches, at-
tacks use a variety of derivative-based approaches to optimize loss
over some non-convex objective function [7, 12, 16, 27, 30, 49, 65].
In our case, we examine executable binaries, where we must work
under more difficult constraints. First, adjacent values for binary
code do not carry semantic meaning. For instance, 0x8F is the binary
encoding of the x86 pop instruction, whereas 0x90 is the seman-
tically unrelated nop instruction. This difference is non-trivial as
it presents a much harder problem than that of optimization over
semi-continuous spaces; in fact, it reduces to integer factorization,
an NP-complete problem [34]. Pierazzi et al. [55] provide detailed
insight into how different problem spaces under which adversarial
machine learning is conducted, such as using binary code as the
input to a DNN, require specific black-box attacks because tradi-
tional gradient-based approaches fail. Another constraint we must
satisfy is to produce valid executable binaries. These constraints
are similar to those necessary in any attack that attempts to modify
binary code [4, 43].

As stated in the previous subsection, other work in using deep
learning for malware analysis has looked the problem of mapping
binaries to either malicious or benign software [57, 58]. In turn,
various work has aimed to attack this type of machine learning
model and others like it [4, 43]. However, this paper presents the
first exploration into evaluating the robustness of deep learning
models against both inadvertent attacks and crafted adversarial
examples.

8 CONCLUSIONS AND FUTURE WORK

We presented the first study of the resilience of neural function
boundary detectors to inadvertent and adversarial attacks. Our
methodology demonstrates that straightforward black-box search
using a large dataset and toolchain array is sufficient to identify
numerous adversarial examples for two state-of-the-art systems:
XDA [54] and DeepDi [76]; sophisticated white-box search algo-
rithms are unnecessary. Our conjecture — which we believe is vali-
dated by our evaluation - is that these systems are susceptible to
attack because they rely on embeddings and model architectures
intended for syntactic inference, and do not sufficiently consider
the semantics of the ISAs they operate on.
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This is not to say that this research direction should be aban-
doned. To the contrary, we believe there remains significant poten-
tial for applying deep learning to binary analysis problems. How-
ever, future research might well benefit from focusing on instruction
semantics rather than syntactic representations. In addition, future
work should ensure that evaluations are based on large, representa-
tive datasets that includes adversarial examples intended to exploit
syntactic dependence. An intriguing research question is whether
effective embeddings and model architectures can be developed
specifically for binary analysis tasks. We plan to investigate this
question in our future work, and hope others will as well.
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Black-box Attacks Against Neural Binary Function Detection

A INADVERTENT EVASION EFFECTS

1 f_no_stack_protector

2 push  rbp ; save caller frame pointer

3 mov rbp, rsp ; set frame pointer

4 ; function body. ..

5 pop rbp ; restore caller frame pointer

6 ret ; return to caller

1 f_stack_protector_strong:

2 push  rbp ; save caller fp

3 mov rbp, rsp ; set fp

4 sub rsp, 0x10 ; alloc stack

5 mov rax, qword fs:0x28 ; get global guard

6 mov qword [rbp-0x8], rax ; inject guard on stack

7 ; function body. ..

8 mov rax, qword fs:0x28 ; get global guard

9 mov rcx, qword [rbp-0x8] ; get stack guard

10 cmp rax, rcx ; compare guards

1 jne .fail ; jump if not equal

12 add rsp, 0x10 ; dealloc stack

13 pop rbp ; restore fp

14 ret ; return to caller

15 .fail:

16 call __stack_chk_fail ; terminate program
Listing 4: Stack protector function prologue and epilogue
modifications (additions in green).

1 f_no_stack_clash_protection:

2 push  rbp ; save caller fp

3 mov rbp, rsp ; set fp

4 sub rsp, 0x10020 ; allocate buffer

5 ; function body. ..

1 f_stack_clash_protection

2 push  rbp ; save caller fp

3 mov rbp, rsp ; set fp

4 mov ri1, rsp ; get sp

5 sub ri1, 0x10000 ; set stack alloc size
6 .next_page:

7 sub rsp, 0x1000 ; alloc next stack page
8 mov qword [rspl, 0x0 ; probe page with store
9 cmp rsp, rii ; check if done allocing

10 jne .next_page ; if not, loop

11 sub rsp, 0x20 ; alloc final 0x20

12 ; function body. ..

oG A W N =
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f_no_cet:

push  rbp

mov rbp, rsp
sub rsp, 0x10

; function body. ..

save caller fp
; set fp
alloc stack

f_cet:

endbré4

push  rbp

mov rbp, rsp
sub rsp, 0x10

; function body. ..

label valid branch target
save caller fp

set fp

alloc stack

Listing 6: Intel CET function prologue modifications (addi-
tions in green).

f_no_safe_stack:

push  rbp
mov rbp, rsp

sub rsp, 0x1010

; function body. ..

add rsp, 0x1010

pop rbp
ret

save caller fp
set fp
alloc stack vars

dealloc stack vars
restore caller fp
return

f_safe_stack:

push  rbp
mov rbp, rsp
sub rsp, 0x20

mov rex, -
; function body. ..
add rsp, 0x20
pop rbp

ret

save caller fp

set fp

alloc safe stack

get unsafe stack pointer

safestack_unsafe_stack_ptr

; dealloc safe stack
; restore caller fp
; return

Listing 5: Stack clash protection function prologue modifica-
tions (deletions in red, additions in green).

Listing 7: SafeStack function prologue and epilogue modifi-
cations (deletions in red, additions in green).
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add
pop
pop
ret

rsp, 0x8
rbx
ri4

f_unaligned:

push
push
push
push
push
push
sub

rbp
r15
ri4
ri3
ri2
rbx
rsp, 0xe8

; function body. ..

prev fn epilogue

save caller registers

alloc stack vars

add
pop
pop
ret
int3
int3
int3
; many
int3
int3
int3
f_aligned:
push
push
push
push
push
push
sub

rsp, 0x8
rbx
ri4

repetitions. ..

rbp
ris
r14
ri3
ri2
rbx
rsp, 0xe8

; function body. ..

prev fn epilogue

sw bkpt padding bytes

; save caller registers

; alloc stack vars

Listing 8: Interstitial function padding modifications due to
varying alignment constraints (additions in green).

Joshua Bundt, Michael Davinroy, loannis Agadakos, Alina Oprea, and William Robertson

16



	Abstract
	1 Introduction
	2 Problem Statement and Motivation
	2.1 Binary Analysis
	2.2 Function Boundary Detection
	2.3 Semantics, or Merely Syntax?

	3 Attacking Neural Function Boundary Detection
	3.1 Attack Techniques and Threat Models
	3.2 Inadvertent Attacks
	3.3 Adversarial Attacks

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Inadvertent Attacks
	5.3 RQ2: Adversarial Attacks
	5.4 RQ3: Systematic Attacks
	5.5 RQ4: Expanded Training Sets
	5.6 RQ5: Adversarial Training

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References
	A Inadvertent Evasion Effects

