Hidden GEMs: Automated Discovery of Access
Control Vulnerabilities in Graphical User Interfaces

Collin Mulliner
Northeastern University
crm@ccs.neu.edu

Abstract—Graphical user interfaces (GUIs) are the predom-
inant means by which users interact with modern programs.
GUIs contain a number of common visual elements or widgets
such as labels, textfields, buttons, and lists, and GUIs typically
provide the ability to set attributes on these widgets to control
their visibility, enabled status, and whether they are writable.
While these attributes are extremely useful to provide visual cues
to users to guide them through an application’s GUI, they can also
be misused for purposes they were not intended. In particular,
in the context of GUI-based applications that include multiple
privilege levels within the application, GUI element attributes
are often misused as a mechanism for enforcing access control
policies.

In this work, we introduce GEMSs, or instances of GUI
element misuse, as a novel class of access control vulnerabilities
in GUI-based applications. We present a classification of different
GEMs that can arise through misuse of widget attributes, and
describe a general algorithm for identifying and confirming the
presence of GEMs in vulnerable applications. We then present
GEM Miner, an implementation of our GEM analysis for the
Windows platform. We evaluate GEM Miner over a test set
of three complex, real-world GUI-based applications targeted
at the small business and enterprise markets, and demonstrate
the efficacy of our analysis by finding numerous previously
unknown access control vulnerabilities in these applications. We
have reported the vulnerabilities we discovered to the developers
of each application, and in one case have received confirmation
of the issue.

I. Introduction

Graphical user interfaces (GUIs) are the predominant
means by which users interact with modern programs. GUIs
were introduced because the use of visual elements such as
icons and standard controls as well as pointing devices —
e.g., the mouse — are much more intuitive for most users
than command line interfaces. As a result, GUIs have become
ubiquitous, and they are found on a wide range of computing
devices (e.g., desktops, tablets, and mobile phones).

From a development perspective, the once-difficult process
of creating GUI-driven applications has become relatively
straightforward. Every major operating system includes and
supports software tools and frameworks for the rapid devel-
opment of GUI-based applications. For example, the popular
Microsoft Foundation Class Library (also known as Microsoft
Foundation Classes, or MFC) is a framework that wraps
portions of the Windows API in C++ classes, including func-
tionality that enables developers to quickly create applications
with a standard look-and-feel. MFC classes are defined to
wrap many of the low-level handle-managed Windows objects,

William Robertson
Northeastern University
wkr@ccs.neu.edu

Engin Kirda
Northeastern University
ek@ccs.neu.edu

and also provide numerous predefined windows and common
controls.

In a typical GUI, user interface elements can be pro-
grammatically hidden, disabled, or made read-only through
the manipulation of attributes on those elements. The idea of
hiding UI components is to make it easier for the developer
to instantiate and use these components when constructing
the interface. That is, rather than deleting a user interface
component and re-instantiating it every time it is needed, it can
simply be hidden from view such that it is invisible to the user.
Similarly, enabling and disabling Ul components allows the
developer to give visual cues to the user on the functionality
that is available in the application. For example, if the user
should not be able to press the “OK” button before filling out
a textfield in a dialog, the button can simply be disabled and
the user will not be able to press it. The GUI framework will
ensure that the button cannot accept any mouse press events
in the disabled state.

Although allowing user interface elements to have different
attributes is useful as a feedback mechanism to the user, there
is a caveat: Developers might start to misuse these attributes
as an access control mechanism in the application logic. For
example, a developer might disable a textfield if the user is
not authorized to enter any input into the backend database
via the user interface. Generally speaking, developers might
start to rely on user interface element attributes to enforce
privilege levels within the application. Unfortunately, these
user interface attributes are not suitable as an access control
mechanism. In fact, tools such as WinSpy++ [7] can be used
to select, view, and modify the attributes of any window in
the system, including the entire hierarchy of widgets those
windows contain. Also, Microsoft offers a similar utility called
Spy++ [17] that ships with Microsoft Visual Studio. Note that
such an external modification of the user interface components
is not only possible on the Windows platform, but is a general
design property of many GUI frameworks (e.g., Java Swing,
GTK).

In this paper, we first introduce a novel class of vulnera-
bilities that we refer to as GEMs, or instances of GUI element
misuse. As discussed above, GEMs arise when developers
rely on and misuse Ul element attributes to implement access
control checks, and to our knowledge have not been reported
before in the literature. GEMs can be used as a basis for
privilege escalation exploits and general access control bypass,
and can be found across all operating systems and GUI
frameworks. GEM-based privilege escalations in GUIs are
highly critical since they require minimal effort and experience
to exploit once discovered by the attacker. They can be used to

Show Info Set Options Select Animal
Label 1 ‘ some text ‘ cat
Idfish
Label 2 ‘some other text ‘ % Option 1 S
L4 snake
z Option 2
Puppy
| [cancel oK | Back | [<Back

(a) The window embeds two labels, two
textfields, and two buttons. One button
is disabled.

(b) The window embeds one label, one
read-only textfield, two checkboxes,
and two buttons.

(c) The window embeds one list view, one
checkbox, and two buttons. One button
is disabled.

Fig. 1: Examples of graphical user interface elements.

easily circumvent Ul-based access control mechanisms if the
developer has not taken the necessary precautions to protect the
application. Note that although simple, GEMs can be difficult
to detect in complex applications. Hence, in the second part of
the paper, we present GEM Miner, a system to automatically
detect GEM vulnerabilities in application GUIs. We built a
prototype system for the Windows platform and evaluated it
using three real-world, complex commercial applications. Us-
ing GEM Miner, we were able to identify numerous previously
unknown GEM vulnerabilities. We have notified the impacted
software vendors, and one of them confirmed our findings.

This paper makes the following contributions:

e We introduce a novel class of vulnerabilities that we refer
to as GEMs, or instances of GUI element misuse. GEMs
are a pervasive class of security problems in GUI-based
applications. To our knowledge, GEMs have not been
discussed in the literature before as a class of access
control vulnerabilities.

e We present a classification of GEM vulnerabilities, and
describe a general algorithm for automatically identifying
and confirming the presence of such vulnerabilities.

e We have created an implementation of our GEM anal-
ysis for the Windows platform called GEM Miner, and
demonstrate its efficacy by evaluating it over three real-
world commercial applications. Our evaluation shows that
our GEM analysis is effective by identifying numerous
previously unknown GEM vulnerabilities in these appli-
cations.

The rest of the paper is organized as follows. Section II
motivates the problem and describes the threat model we as-
sume. Section III presents a classification of GEMs. Section [V
describes our algorithm for automatically mining GEMs in
GUI-based applications. Section V describes our implementa-
tion of the GEM mining algorithm for the Windows platform.
Section VI presents the results of applying our system to sev-
eral real-world commercial applications. Section VII discusses
related work, and Section VIII concludes the paper.

II. Background

In this section, we provide background information on
graphical user interfaces, how they can be misused, and discuss
our threat model for GEM vulnerabilities.

A. Graphical User Interfaces

A typical graphical user interface (GUI) is comprised of
widgets. A widget is a self-contained visual element provided
by a GUI framework to display data to the user, or to receive
user input. Modern GUIs typically include common widgets
such as windows, dialogs, pop-ups, buttons, textfields, check-
boxes, and sliders that can be combined to build interactive,
event-driven user interfaces.

Most operating systems now provide standard GUI frame-
works that allow for the rapid development of GUI applications
for that specific platform that share a common look-and-
feel. Developers can often use drag and drop techniques to
compose the user interface, and can additionally introduce
custom widgets based on an underlying framework to extend
its functionality.

In general, within a GUI system, only one widget can
receive input at any given time. The exception to this are
special events (e.g., special hot key sequences) that may be
fired. Hence, such systems use the concept of focus. A widget
that has the focus receives the user input such as key presses
or mouse inputs. The focus can be changed through a number
of different events such as moving the mouse over another
widget, clicking a mouse button, or pressing a special key
on the keyboard. Furthermore, the focus can also be changed
programmatically.

In a typical GUI, user interface elements can be pro-
grammatically hidden, disabled, or enabled to make it easier
to instantiate and use components when they are needed.
This feature makes it easier to program GUI components
and to selectively show parts of the user interface to the
users according to the semantics of the application logic. For
example, the button to submit a username and password might
be programmatically disabled until both textfields have been
filled by the user. Users have become conditioned to seeing

(=1 Frint... | |

Print barcode, create bi Print barcode, create be

(a) The button is disabled to
prevent user from creating
a new article.

(b) The button now is enabled
and can be selected and
clicked.

Fig. 2: An example of a GEM in a real application. Here, we show
that an attacker could enable the “New article” button so it
can be clicked, even though the attacker should not have the
ability to create new articles.

such visual cues, and the programmer can use these features
to guide the user through the application’s GUI. In contrast to
enabled and disabled widgets that are visible to users, a hidden
widget is still considered part of the UlI, but it is not drawn to
the screen and cannot receive any user input.

Note that operating systems might also provide more
sophisticated widgets that have additional, advanced features.
For example, widgets can be directly connected to database
backends and can be used to automatically load data that is
then displayed to the user. The textfields in the widget can
then be set read-only to disallow modifications by the user.

Figure 1 shows three example windows that contain a
number of widgets that should be familiar to all users.

B. Access control and GUIs

Enforcing access control is a basic requirement of any
application that computes over sensitive data, which is often
the case for applications targeted at the SMB or enterprise
markets. Because GUIs offer the ability to set the visibility,
enabled status, or writable status of Ul components, a common
assumption by many developers is that such components can
safely be used as a part of the access control implementation
of the application logic. After all, the operating system will
ensure that the user is not able to press buttons that have been
hidden or disabled, and that the user cannot simply type text
into fields that are read-only. However, in reality, the GUI is
not a reliable mechanism to enforce access control decisions
because widgets in most GUI systems can simply be modified
from outside of the application. That is, one can use standard
OS services to interact with any Ul component to inspect and
modify the properties of any Ul components that are running
with the same OS-level privileges. Hence, if the application
logic relies on Ul components to enforce access control, such
checks can easily be explored and bypassed by an attacker.

For example, consider the following simple GUI-based
attack that is taken directly from one of the applications we
analyzed in this work. The application in question is an in-
ventory management application targeted at small businesses.
The administrator has disabled the ability for lower-privileged
users to create a new article in the inventory. Figure 2a shows a
relevant part of the application’s main window containing two

buttons, where the button “New article” is disabled. Using
a tool such as WinSpy++, an attacker can interact with the
window and simply enable the button. Figure 2b shows the
same button that is now enabled. The button can now be
clicked by the attacker, allowing the attacker to create a new
article in the database even though he is not authorized to
access this functionality.

C. Threat Model

It is not uncommon for GUI applications to support dif-
ferent privilege levels within the application itself. In fact,
applications in the enterprise context often process sensitive
data that should only be accessible by specific users of the
given system. These applications typically implement fine-
grained access control schemes for reading and modifying the
data processed by the application. This kind of access control
is, again, highly application-specific, and limits the data and
functionality to specific authorized users.

In our threat model, we assume that the application sup-
ports multiple privilege levels within the application that the
attacker is interested in exploiting. For example, the applica-
tion might support separate administrator and unprivileged user
modes. In the user mode, certain privileged operations such
as entering a new item into the database might be disabled,
while in the administrator mode the full functionality of the
application would be exposed to the user.

We also assume that the attacker has the ability to run
programs on the target machine that can access the vulnerable
application. This provides a large degree of power to the
attacker, of course, since the attacker could in theory execute
an exploit on the target machine to elevate her privileges, or
reverse engineer the vulnerable application to either directly
recover sensitive information or discover memory corruption
vulnerabilities that could be exploited. However, we also
assume that the attacker is not necessarily technically so-
phisticated. In the remainder of the paper, we demonstrate
that GEM-based vulnerabilities can be successfully exploited
by technically unsophisticated users by a process as simple
as running a program to explore that GUI of the vulnerable
program, a significantly lower bar than, for example, reverse
engineering binary code (that may be obfuscated and that may
be using anti-reversing techniques).

III. A Classification of GEMs

In this section, we present a definition of GEMs, or
instances of GUI element misuse. We then enumerate several
categories of GEMs that can arise in GUI-based applications.

We can model a GUI application as A = (D,C,P,W)
where D = {d;, dy,...} is the set of data objects the appli-
cation computes over, C = {cj,cp,...} is the set of event
callbacks (or computations that are invoked in response to
GUI events), P = {p1,p2,...} is the set of privilege levels
users of the application can possess, and W = {wy,w,,...} is
the set of widgets exposed in the GUI. Applications enforce
an access control policy over D and C, which we model as

the functions read, write, and exec. Specifically we have,

read : D x P — {true, false}
write : D x P — {true, false}
exec : C x P — {true, false},

where read determines whether a given privilege level is
sufficient to read a data object, write determines whether a
given privilege level is sufficient to modify a data object, and
exec determines whether a given privilege level is sufficient
to execute an event callback. Privileges can map to users of
the application, roles assumed by users of the applications, or
whether a user has obtained a license for the application, to
name a few concrete examples.

To enforce the access control policy, the application must
invoke a reference monitor that interposes on each type of op-
eration over D and C. In many cases, the GUI framework itself
is used by the application to implement this reference monitor.
The main widget attributes relevant for policy enforcement are
“enabled,” “visible,” and “value,” which we model using the
functions

enabled : W x P — {true, false}
visible : W x P — {true, false}
value: W x P — D U{&}.

For instance, in the GUI-enforced monitor scheme,

read (di,pj) = visible (Wi, pj)
Avalue (Wi, pj) = di,
which states that read access to d; under privilege level pj is

granted if widget wy contains the value d; and wy is visible
under pj. Similarly, we have

write (di, pj) = enabled (W, pj)
A\ visible (Wi, pj)
A value (Wi, p;) = di
exec (ci,pj) = enabled (widget (ci) ,pj)
A\ visible (widget (ci) , ;)

where widget : C — W maps event callbacks to the widgets
they are registered with.

GEMs arise when the application developer in fact decides
to rely upon the GUI framework itself to implement a sub-
set — or all — of the reference monitor, since the required
property of complete mediation is not actually provided by
GUI frameworks. In particular, it is possible in most modern
GUI frameworks for unprivileged users to directly modify the
enabled, visible, and value attributes for all widgets, essentially
granting complete control over the enabled, visible, and value
relations.

Using this abstraction, we can enumerate several classes
of GEMs.

1) Unauthorized information disclosure:

(G1) read(-) = visible (-) /\ value (-)

Information disclosure GEMs arise when applications en-
force read access to data stored in a GUI element by setting

the element’s visibility attribute to false — i.e., an element
containing sensitive data is simply hidden if the current user
doesn’t possess sufficient privilege to access that data. This
situation can also arise if the application fails to scrub GUI
elements that might contain sensitive data when switching
between users with different privilege levels.

2) Unauthorized information modification:

(G2) write(-) # enabled (-) /\ visible (-) /\ value (-)

Information modification GEMs occur when applications
enforce write access to data stored in GUI elements via those
elements’ enabled and visibility attributes. This class of GEM
can be useful for bypassing authentication procedures to gain
elevated privileges.

One can further categorize information modification into
transient and persistent modifications. Transient modifications
exist for the duration of a session, while persistent modifica-
tions are saved to the application’s backing store. Persistent
modifications are often realizable in conjunction with the
following class.

3) Unauthorized callback execution:

(G3) exec(-) # enabled (-) A visible (+)

Callback execution GEMs arise when the application en-
forces access to privileged event callbacks through the enable
and visibility attributes of GUI elements. These elements are
often buttons, but can also be invoked on focus or hover events
generated by arbitrary elements. Privileged event callbacks can
lead to persistent modifications of sensitive data or authenti-
cation bypasses, as two examples.

IV. The GEM Miner Analysis

Next, we present a generic algorithm for discovering GEMs
in graphical user interfaces, a process we term GEM mining.
The algorithm represents a black-box analysis of GUI-based
applications to discover access control vulnerabilities and,
therefore, does not assume visibility into the application code
itself or any underlying data model. Additionally, the algorithm
itself is agnostic of the specific graphical toolkit used by an
application, and only assumes the ability to introspect on and
modify widgets, features that are common to virtually all GUI
frameworks in use today. We discuss our implementation of
this algorithm for applications on the Windows platform in
Section V, though we are confident that it is general enough
to easily apply to other GUI frameworks.

GEM mining proceeds in four distinct phases: a) appli-
cation seeding, b) Ul exploration, ¢) GEM candidate identifi-
cation, and d) GEM checking. In the seeding phase, the test
engineer performs an initial configuration of the application
under test (AUT), for instance by creating a number of users
or roles at distinct privilege levels. In the second phase, human-
assisted Ul exploration is performed to recover the space of
possible UI states for the AUT. GEM candidate identification
is performed in the third phase, where the collection of
UI states found during the exploration phase is analyzed to
identify candidate access control vulnerabilities belonging to
one or more of the GEM classes enumerated in Section III.

GEM Analysis

Ul Exploration

GEM Candidate
Identification

Ul States

e

cew crecker | > @@@
GEMs
GEM
Candidates
N ——

Test Engineer

Fig. 3: Architectural overview of the GEM Miner analysis. The application is first seeded by a test engineer. Then, assisted UI exploration is
performed to identify unique UI states. GEM candidate extraction examines the set of Ul states found during the exploration. Candidate

GEMs are confirmed in the final checking phase.

These candidates and the path through the GUI to reach them
is analyzed in the final GEM checking phase to automatically
confirm the vulnerability of the candidates. An overview of
this process is presented in Figure 3.

In the remainder of this section, we elaborate on the details
of each of these analysis phases.

A. Application Seeding

The first phase of the analysis is the application seeding
phase. Seeding is generally required since applications often
are not pre-configured with user accounts or roles at differ-
ent privilege levels, a requirement for the remainder of the
analysis. In addition, our analysis also requires data objects
at different authorization levels in order to identify GEM
candidates. As these considerations are application-dependent,
we rely upon a test engineer to first familiarize themselves
with the application’s access control framework and prepare
the application for testing. We enumerate common seeding
activities in the following, though other steps could be required
on a case-by-case basis.

1) Creating User Accounts or Roles: As mentioned pre-
viously, user accounts or roles with different privilege levels
often need to be manually created by the test engineer as a first
step of the seeding phase. The subjects might differ according
to the design of the AUT; for instance, they could represent
an unauthenticated user and administrator, an unlicensed user
and a licensed user, or more generally a set of users with
increasing levels of privilege. However, we require that at least
two distinct privilege levels are available in the application
— that is, |P| > 2. If two such levels do not exist in the
application, then by our definition GEMs cannot exist in the
AUT.

2) Creating Data: A second requirement of this phase is to
seed the AUT with data. In particular, our analysis requires the
presence of data with different authorization policies expressed
in terms of the previously configured privilege levels. That is,
given privilege levels {p1, 2, ..., pnJ, the test engineer should
inject data objects {d;, d, ..., pm} such that d, is readable and
writable by subjects with privilege level p;, d, is readable
and writable by subjects with privilege level p,, and so on.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

for privilege_level in privilege_levels:
init_state = (initial_state(privilege_level), list())
state_queue = queue(init_state)
visited_states = set()

while not state_queue.empty():
state, path = state_queue.pop_front()
visited_states += state
actions = succ_actions(state)

for action in actions:
succ_state = apply_action(state, action)
if succ_state not in visited_states:
succ_path = path + [action]
state_queue += (succ_state, succ_path)

Fig. 4: Ul state space exploration algorithm expressed as pseudocode.

Examples of data could include user profiles or items in a
database, and is application-dependent.

3) Authentication Procedures: A final common require-
ment of the seeding phase is to record the steps required
to authenticate and change privileges. Typically, this entails
recording the sequence of Ul actions required to reach and sub-
mit a login dialog, but is also generally speaking application-
dependent.

B. UI Exploration

The second phase of the analysis explores the Ul state
space of the AUT. By UI state, we refer to the set of access
control configurations for each widget w; under privilege level
P;. More formally, we wish to recover all possible s € S such
that

s = (enabled (Wi,pj) >
visible (Wi, pj) ,
value (Wi, pj)) Ywi, pj.

The algorithm our analysis uses to explore the Ul state
space is shown in Figure 4. For each distinct privilege level
supported by the AUT and the seeding phase configuration, an

initial Ul state of the application is extracted. This initial state
is queued for exploration, and the visited state set is initialized
to empty. Then, a breadth-first search is performed using the
analysis queue for scheduling. At each iteration, the next state
is retrieved from the queue and recorded as visited. The set of
possible UI actions that can be executed on the given state is
generated. Then, for each possible action, we apply the action
and record the successor state and path of Ul actions to reach
that state. If this successor state is distinct from all previously
visited states, then it is queued for analysis. Otherwise, it is
discarded.

When generating a set of possible actions that can be
applied to generate successor states, the exploration algorithm
selects widgets from the current state that are likely to lead
to the execution of an application event callback that will
generate a new state. In practice, this amounts to recognizing
UI elements such as buttons that often result in the creation of
new windows or dialogs. The selection criteria, however, is a
policy that can be modified to suit the needs of the AUT.

It is also important to note that during this phase, the
analysis does not modify widget attributes — i.e., enabled (-),
visible (), or value (-) — to avoid accidentally corrupting the
application’s state, which can lead to instability and program
crashes.

Ul state equality given two states si,s; as used in the
visited state set membership check is defined as equality be-
tween the enabled (-) , visible (+) , value (-) values for the union
of widgets present in both states at privilege level py.

‘We denote the set of Ul states discovered in this phase
as S C S. We note that we do not claim that the exploration
algorithm we outline here is capable of retrieving all possible
UI states, as reachability could be determined by factors other
than those Ul elements that are visible from the black-box
perspective our analysis assumes. However, as we demonstrate
in our evaluation in Section VI, this algorithm nevertheless
performs well in practice.

During the exploration phase, a situation might arise where
the analysis is unable to determine a valid action that will
lead to a new successor Ul state. To address this scenario, the
analysis records a set of widgets that should lead to a new state
and issues a request for assistance from the test engineer. The
tester can manually inspect this set and provide feedback to
the analysis in the form of UI actions that should be executed
to produce new successors. The exploration is then restarted.
We provide a concrete example of this feedback process in
Section V.

C. GEM Candidate Identification

From the set of Ul states S collected during the exploration
phase, our analysis then infers the access control policy the
AUT intends to enforce. That is, from S, we recover read,
write, and exec labels for each widget and privilege level pair
(Wi,Pj)-

Then, for each privilege level, the analysis compares the Ul
states reachable via a given path of UI actions executed during
the exploration phase. This comparison is performed over all
pairs of privilege levels pi,p; between each widget wi and
the attributes associated with that widget at each level. The

identification phase then selects candidate GEMs based on the
following criteria

visible (W, pi) # visible (Wi, pj)
enabled (Wy, pi) # enabled (Wi, pj) .

Discrepancies between visibility attributes for the same
widget at two privilege levels suggest the presence of an
unauthorized information disclosure GEM (G1), while a dis-
crepancy between enabled attributes suggests potential unau-
thorized modification (G2) or callback execution GEMs (G3).
The set of candidate GEMs is recorded by the analysis as
W Cw.

D. GEM Checking

The final phase of the analysis is GEM checking, where
the goal is to confirm candidates W identified in the previous
phase. Here, the analysis again drives the user interface of
the AUT as in the exploration phase. However, in contrast to
exploration, where the aim is to cover as much as possible of
the UI state space, the checking phase replays the sequence
of UI actions required to reach each candidate GEM that was
recorded during exploration.

In the following, we describe the particular strategy used in
the analysis to confirm each of the different classes of GEMs.

a) Unauthorized information modification (G2): In
confirming the presence of information modification GEMs,
the general approach is, for each candidate widget w, € W,
to replay the path of UI actions required to reach w. under
a privilege level p; where enabled (w.) = false. Then, w, is
enabled and a special value is injected into w, by the analysis
such that value (w.) = x. Next, the analysis attempts to persist
the injected value by exercising possible successor actions to
invoke application callbacks to that effect. Finally, the analysis
replays the sequence of Ul actions to reach w. a second time
and inspects it to obtain value’ (w.). If the injected value is still
present — i.e., value (w.) = value’ (w.) = x, then the presence
of an information modification GEM has been confirmed.

The values that the analysis injects are drawn from different
domains — e.g., integers, alphanumeric strings, floating point
numbers — and different lengths in an attempt to automati-
cally satisfy any input validation that the application might
perform. Values from different domains are injected until one
is accepted by the application, beginning with integers as they
are also valid strings and are most often accepted. The entire
checking sequence is repeated until an accepted value is found.

In addition, the procedure that we describe above is actu-
ally performed twice by the analysis to distinguish between
transient and persistent modifications. In particular, to estab-
lish that a persistent modification GEM exists, the analysis
closes the AUT after a potential successor callback has been
invoked. Then, the application is restarted before replaying
the UI action sequence to inspect w, the second time. If the
injected value is still present, then the analysis infers that the
injected value was persisted to the backing store of the AUT,
and concludes that a persistent modification GEM has been
confirmed.

b) Unauthorized callback execution (G3): Confirming
the presence of callback execution GEMs is similar to the
procedure for modification GEMs. For each candidate widget
w. € W, the path to reach w, is replayed under a privilege
level p; where enabled (W) = false. Then, w, is enabled, set
visible, and exercised; for instance, in the case of a button, a
click event is generated.

In contrast to the modification confirmation case, the next
step is to examine the successor Ul state. If it is equal to the
successor state of an invocation of w, under privilege level
P; such that p; < pj according to the definition of UI state
equality given in the description of the exploration phase, then
the analysis concludes that the invocation was successful and
that a callback execution GEM has been confirmed.

¢) Unauthorized information disclosure (G1): In prin-
ciple, the final class of GEMs that our analysis confirms should
not require active checking of the AUT. Instead, this class of
GEM should only require analysis of the set of Ul states for the
widget w, across all possible privilege levels. In particular, our
analysis would check — as it exactly does during the identifi-
cation phase — whether there exists a pair of privileges pj, px
such that p; # pix and visible (W¢,pj) # visible (w¢,pi). If
values were also present in w, during the exploration phase,
then the GEM could be considered confirmed.

However, in practice, this class of GEM exists in two
flavors: disclosures based on widgets hidden in all UI states,
and disclosures based on sensitive data that is “left over” in
widgets after a higher-privileged user, such as an administrator,
has interacted with the GUI. We term this subcategory of
vulnerabilities dangling GEMs.

In cases where an application allows for temporary eleva-
tion of privileges, the order of privileges that the exploration is
performed under becomes important. That is, in order to detect
dangling GEMs, the analysis must first exercise the AUT
as a high-privilege user, inject data into a candidate widget,
and then lower privileges and check whether the data is still
present in the widget. Therefore, to confirm dangling GEMs,
our analysis performs the above procedure in this phase.

V. Implementation

Our prototype implementation of the GEM Miner analysis
targets the Microsoft Windows platform, since it is heavily
used in commercial environments to develop applications with
complex access control schemes that are prone to GEMs. In
this section, we provide background information on Windows
GUI frameworks, present the prototype, and discuss practical
aspects of its implementation.

A. Windows Applications

GUI applications on Windows consist of a hierarchy of
widgets, where top-level widgets correspond primarily to win-
dows and dialogs that contain sub-trees of widgets. Windows
and dialogs typically contain one or more frames and layouts
that dictate how groups of widgets are grouped and displayed
to users. Widgets below the level of layout containers include
familiar examples such as textfields, buttons, drop down lists,
tables, checkboxes, and radio buttons.

On Windows, each widget has a number of standard
attributes, including size, visibility, whether it is enabled, and
whether it is writable. Windows does not directly define widget
types, however. Typically, applications use widgets defined by
higher-level GUI frameworks.!

B. Widget Types

The Windows API allows programs to query a widget’s
type, which is returned as a string. Due to variances between
different GUI frameworks, a button might be labeled as a But-
ton, TBitBut, or one of many other possibilities. Therefore, to
achieve complete coverage of the possible GUI elements used
on Windows, one would have to learn the entire set of all
widgets that are provided by the many GUI frameworks used
on the platform. For our prototype, however, we restricted our
widget recognition logic to basic widget types such as buttons,
checkboxes, and textfields. To accomplish this, we learned a
mapping between widget names and types for a set of popular
GUI frameworks.

Windows provides the ability to delegate widget rendering
and logic to GUI frameworks, and many take advantage of
this capability. Therefore, the low-level Windows API does
not always provide the ability to query and manipulate certain
widget sub-trees in applications under test. We denote such
widgets as opaque. Common examples of opaque widgets
include custom table widgets or button bars provided by high-
level GUI frameworks.

C. Interacting with Widgets

Windows provides a wide range of APIs for programs
to interact with widgets. One important set of functions are
SendMessage and SendMessageTimeout, which allows pro-
grams to send events such as mouse clicks and key presses
directly to a specific widget. Another useful function is Send-
Input, which allows programs to inject keyboard and mouse
events into the Windows event queue. The difference between
these two functions is that SendMessage targets specific wid-
gets regardless of the current focus, while SendInput directs
events at whatever widget is currently in focus. Therefore,
SendMessage is the preferred function due to its precision,
but our implementation falls back to SendInput for opaque
widgets that cannot be directly accessed.

Windows also provides an API to modify the state of a
widget. A widget can be enabled or disabled using EnableWin-
dow(Handle, Bool). A widget can be set visible or hidden
using SetWindowPos (Handle, @, @, 0, @, flags) by setting
flags to either SWP_SHOWWINDOW or SWP_HIDEWINDOW.

Finally, values contained in widgets that display data
can also be interacted with. For instance, in the case of
textfields, data can be read by sending the WM_GETTEXT mes-
sage using SendMessage, while textfield data can modified
using SendMessage to emulate “select all” (EM_SETSEL) and
“replace” operations (EM_REPLACESEL).

'We note that in Windows terminology, all widgets are actually referred
to as “windows.” In our description of our implementation, we distinguish
between top-level windows and widgets contained in those windows for the
sake of clarity.

"4 Reiner GMBH - PROFFIX Adresserfassung

=S EeR =
Datei Bearbeiten Register Extras ?

% &l 2le . |8 I A r Z AN |
Module # Adressverwaltung

22 Suchfelder
& Abfrage 7% B P Sl I Adressoruppen
DEMO
- Suchield [[interessenten
Adress-Vervaltung g
[Clueferanten
Clprivate Adressen

Name / Firma

Vorname

on

Adress-Nr. 0

9] Gruppen kombinieren

ALdress-Nr. Name / Firma Vorname Adresszeile 1

WindowsForms10.Window.8.app.0.3787342:488x28:363x113x851x141

« i b

Liste | Adressinfo

Dricken Sie F1 fir Hilfe... 0 Datensatze, 0 markiert 11/14/2013

Fig. 5: Window with an annotated opaque widget. The widget ID is
drawn at the center of the window.

Our implementation uses the Windows API function Enum-
ChildWindows to enumerate all currently registered windows
instantiated by the AUT. The UI state of each window
is retrieved using GetWindowLong, IsWindowVisible, and
IsWindowEnabled. The window type is determined using
GetClassName.

D. User Interaction for Special Widgets

Each time the UI exploration encounters a widget that
does not produce a new successor Ul state, this fact is
recorded. These facts are used to request assistance from the
test engineer, who can then provide feedback in the form of
an exception for the specific widget if necessary. Exceptions
involve adding a specific offset inside the widget’s bounding
box to precisely target an injected mouse click. One example
where this could be necessary is to click a specific button
inside a button bar. Another case is when key press events
must be used to set focus and execute a Ul action inside of an
opaque widget. For instance, we use this to select and activate
an item in a table view by injecting an “arrow down” key press
followed by a “return” key press.

To ease the process of creating exceptions, the imple-
mentation produces an annotated screen capture of Ul states
where new successors could not be identified. In particular, the
problematic widget is highlighted by drawing a box around
it. The test engineer can then easily identify and create an
exception for the widget through manual inspection. Figure 5
shows an example of an annotated screen capture of Proffix.

The test engineer can further specify that a specific widget
should be ignored by its ID, by its caption, or by its widget
class. This capability is mostly needed to prevent undesired
side effects during UI exploration, such as accidental print
requests or modifications to the filesystem.

In our evaluation in Section VI, we quantify how many
exceptions were required to analyze our case studies with our
implementation.

E. Windows Widget Attributes

In addition to a widget’s visibility and enabled status,
Windows defines an extra attribute for some widgets such as
textfields that controls their read-write status. For instance, on
Windows, a textfield that is only used to display data needs to
be enabled in order for the GUI to allow setting focus to the
field. This could be used to allow the user to select the contents
of the field in order to paste it elsewhere. However, since the
field is only used for display purposes, it should not actually
be editable. The read-write attribute is therefore provided to
indicate that this is the desired state of the field.

While we do not explicitly model the read-write attribute
in Section III, we note that for our purposes, the enabled (-)
relation subsumes both the enabled and read-write attributes
found on Windows.

F. Detecting Dangling GEMs

Dangling GEMs are the result of “left over” data that
is stored in widgets after a temporary switch from a lower
privilege level to a higher privilege level within a single
session. To detect this class of GEM, our implementation
performs an additional step.

When the analysis determines that the Ul exploration is
complete, instead of simply terminating the AUT, the analysis
records the Ul state after dropping from a higher privilege level
to a lower privilege level. Using this method, our implemen-
tation does not need to inject specific data into any widget to
detect dangling information disclosure GEMs. Instead, it relies
only on the fact that the AUT loads data into a privileged
widget during its execution.

G. Generating Successor States

To generate new successor Ul states, the implementation
must indicate to the AUT that data entered into widgets
is ready to be processed. This is usually accomplished by
pressing a button; however, the correct subset of widgets to
exercise is application-specific.

Our implementation uses a heuristic to select the appropri-
ate widget to exercise. The heuristic we currently use extracts
all buttons from the current UI state and compares their labels
to a list of values that often suggest a computation leading
to a new UI state will occur, such as “OK” or “Save.” If no
button is found, the implementation then iterates through all
available buttons in the current UI state.

H. Limitations

Our prototype implementation of GEM Miner has some
limitations that are important to discuss. First, opaque widgets
that the implementation currently cannot interact with increase
the time required to analyze applications, as the test engineer
must provide feedback before the analysis can continue. This
often occurs when an application uses complex or custom
widgets such as lists, tables, and trees. We observe that support
for many of these widgets could be added, but this is an extra
implementation step that we have not yet completed. We also
note that even without direct support for these widget types,
our analysis is nevertheless able to confirm numerous GEM-
based vulnerabilities as we demonstrate in Section VI. This is

| T (o= el =
(=] File @ Settings Barcodes Admin Tools Calculations Language Search Searchagain Help
® Decrease amourt) Increase amount Aticle no/barcode input for barcode scanner of manual input
Teminate with [Retuin] or [Space]
. t
Aoy L b sbschieBen
Atticle description Atticke rio. Baicode Amount Batchrumber Minmumin.. Manufacturer Bupin..|
W] aricle1 00 0.00 0.0¢
¥ article2 0 0.00 00c
] aricte3 00 0.00 0.0c
W articled 00 0.00 00c
] aticles am 000 0oC
¥ articles 0 0.00 00c
] aricle? am 00 0.oC
] articled 0.00 000 0.0
] aricles am 00 0oC
[article10 0.00 000 000
« I »
Frotocol 7
User. testl
G Edtaice.. | [i inciease/decrease amount |
[arm] [Bookenties.. | == test] - 3 User 3 Logout
Print barcode, create batch number: click with the right mouse button on an entry
Fig. 6: The main window of App1.

Progam Administration Parameters Extras Help.

Testversion Logged in as:

= e Feros | 8 ot | () g

Friday, November 15, 2013 11:58:06 AN

Perod | November 2012

ek f R EEFEEFFFFFEEEEEFEEE R EREREERER
=t 90000 6006090 o000 0
=D HES

December 2013 ‘

Key & Filter
@ o R ooy VS PCIEI ~CS ~ e
R S v v saysn | ST PITET [
IV Projects

2013108 to 20131 208 [~ |TextView: [Key: [v |Legiimation

Fig. 7: The main window of App2.

due to our usage of mechanisms such as SendInput, which
allows our implementation to inject events into the Windows
event queue to the widget currently in focus, even if the
implementation cannot directly interact with the widget.

Second, we do not claim that our exploration of the UI state
space is complete. This would require an a priori specification
of all possible widgets an application could instantiate, or
extraction of this information from the program itself. Since,
however, we use a black-box analysis, we do not attempt to
extract this specification from AUTs. In addition, we note
that full specifications of an application’s Ul do not exist in
the general case, although some GUI frameworks do provide
subsets of this information indirectly when GUI layouts are
specified in a manifest accompanying the application (e.g., An-
droid XML layouts). Regardless, our UI exploration technique,
while incomplete, is nevertheless capable of covering most or
all of the UI state space for real applications, and is capable
of discovering a significant number of vulnerabilities for those
applications.

VI. Evaluation

We evaluated GEM Miner, our implementation of the
GEM mining analysis for the Windows platform, by applying

‘= Reiner GMBH - PROFFIX Adresserfassung ==
Datei Bearbeiten Register Extras 7
[2x|2|@. #G

Medule # Adressverwaltung

22 Suchfelder
. oo e— LY UL T R

| D AO e rae]E0B KRG

Suchfeld [Climteressenten
Adress-Verwaliung Fkund
Name / Firma = acen
v [Lieferanten
el mefate Adressen
Ort
Adress-Nr. 0 7] Gruppen kombinieren
Adress-Nr. Name [Firma Vormame Adresszeile 1
10 testd testd
9 testd test3
8 tesi2 test2
7 testl testl
4 Smith Joe
5 Doe John
6 Coffee Jos
< e v
Liste | Adressinfo |

Driicken Sie F1 far Hilfe... 8 Datensétze, 1 markiert 11/15/2013

Fig. 8: The main window of Proffix.

it to three applications that incorporate multiple levels of priv-
ilege. Two of these were native applications written directly
to the Win32 API, while the remaining one was written using
the NET framework. We selected the applications based on
the fact that they implement multiple privilege levels within
the application.

In the following, we first provide an overview of each of
the applications under test by introducing the purpose of the
applications, the access control schemes they implement, and
how we seeded the applications for our tests. Then, we present
the results of our analysis and discuss the results.

A. App1

App1 is an application for managing inventory (Figure 6).
We analyzed the trial version of the software, while the full
version of this software costs $55. The application supports
multiple users, with the ability to grant or deny the ability
to perform individual operations such as viewing, editing, or
removing inventory items. The application also supports an
administrative mode that grants full privileges to perform any
operation provided by the application. The administrator mode
is protected by password-based authentication.

The application requires a user to authenticate before it can
be used. Switching to the administrative mode requires a user
to log in prior to elevating privileges within the application.

To seed App1, we created one user account in addition to
the default administrator role. For this less-privileged user, we
added access control rules to deny the ability to perform two
operations. We also added 10 articles to the inventory.

Tests conducted in high privilege mode were performed
using the administrator role, while tests in low privilege mode
were conducted as a user.

B. App2

App2 is an employee and project management application
(Figure 7). We analyzed the trial version of this software in our
evaluation; enabling the full version of the application requires

as $23/year subscription. The application supports multiple
users and role-based privileges that can be assigned to a user
account. Similarly to App1, this application also includes by
default an administrator role that is protected by password-
based authentication.

The administrator role has access to all functionality pro-
vided by the application. In addition, some operations are only
available to the administrator. App2 does not require users to
authenticate at application startup, but instead prompts users to
authenticate at the time that a privileged operation is invoked
during execution.

To seed the application, we created two user accounts and
granted these accounts the ability to perform a subset of the
full operations provided by the application. We did not need to
supply additional seeding data, since the application provides
employee management, and considers users of the application
as employees.

Tests conducted in high privilege mode were performed
as the administrator, while tests in low privilege mode were
performed as the two users.

C. Proffix

Proffix [25] is an application that provides client manage-
ment, order processing, and financial accounting functionality
for small to medium-size businesses (Figure 8). The basic ver-
sion of the software costs $2700. In addition, the functionality
of Proffix can be extended for different tasks through a plugin
architecture. Not all components of Proffix are available in the
trial version, and so we focused our analysis on the address
management component since it operates as a standalone
application. The price of this component is $340/user.

Proffix supports multiple users and fine-grained access
control for most aspects of the application. Similarly to the
other two applications, an administrator account is included
by default and possesses all privileges provided by the pro-
gram. In particular, administrator privileges are required to
create accounts for each individual user and grant specific
privileges to each user. Privileges can be assigned based on
software modules such as the address management component.
Examples of assignable privileges available in Proffix include
capabilities such as allowing read, write, and modify access
to individual records and even fields inside individual records.
The application requires users to authenticate at application
startup.

We seeded Proffix with two user accounts that each have
read access to the address database. Write access was only
enabled for one of the users. We also added 10 address records
to the database.

Tests conducted in high privilege mode were performed
under the user account that had read and write access, while
tests in low privilege mode were conducted as the user account
with read-only access.

D. Analysis Time and Coverage

In this section of the evaluation, we report on the time
required to analyze the applications in the test set, and the
coverage of Ul states achieved during the analysis using our
GEM Miner implementation.

1) Analysis Time: Since the analysis we describe in this
paper is human-assisted and not completely automated, giving
a sense of the time required to analyze applications for GEMs
must account for the time spent by the test engineer to provide
feedback to the analysis as well as the time spent during the au-
tomated exploration phase. To that end, we report on the end-
to-end analysis time in Figure 9a. This graph plots the number
of UI states covered by the analysis against the total runtime
of the analysis in minutes for each of the applications in the
test set. Points on each line indicate restarts of the analysis
due to requests for feedback from the test engineer to resolve
ambiguities in generating successor Ul states. Decreases in the
number of UI states explored occur when undesired UI states
are generated and blacklisted. Examples of this include when
system dialogs like file save or print dialogs are instantiated
as a result of UI actions.

To incorporate the time required for feedback, we used
an estimate of two minutes for the average time required to
provide feedback by a trained user of the implementation. This
estimate is a conservative upper bound on the actual time
required during the evaluation, which was usually much less.

In the case of Proffix, we observe that the analysis time
required was just under 100 minutes to explore the entirety of
the address book component of the application. This is in line
with the fact that Proffix is a complex application with a highly-
configurable access control scheme. During the initial period
of the analysis, relatively few unique UI states are explored, as
human feedback was required to blacklist problematic widgets
and to instruct the explorer on how to make progress by finding
valid successor states. However, after this initial period of
around 18 minutes, the benefits of automation become clear as
the implementation is able to quickly discover a large number
of unique UI states. As the Ul of the application is explored
under different privilege levels, the rate of exploration slowly
decreases until the entirety of the Ul has been covered.

In the other two cases, exploration proceeded much more
quickly as less feedback was required. We note that this
is not necessarily solely a reflection of the complexity of
the application itself, but is rather also due to the fact that
much less feedback was required to cover all Ul states of the
application. In particular, App1 did not require any feedback
from the test engineer at all in order to completely explore the
application.

The subsequent phases of the analysis — i.e., GEM candi-
date identification and confirmation — are fully automatic and
a function of the number of candidates identified. In our tests,
these phases were completed on the order of a few seconds.
We report on the end-to-end runtime required for all phases
of the analysis over the test set in Table I.

2) UI State Coverage: In Figure 9b, we show the absolute
numbers of UI states discovered during low and high privilege
explorations of each application. This demonstrates that each
application contains a significant amount of functionality that
is not available to low-privilege users.

E. GEM Detection

In our experiments, our prototype implementation of GEM
Miner was able to discover and confirm a number of GEMs

80

PROFFIX —— |
pp1 -
App2 ---*---
70 1
60 | 1
50 | x 4
8
=] [
G 40F ¥ 1
it ‘ E
H*
30r 1
20/]
i xx
ol 1
o \ \ \ \ \ \ \ \ \
) 10 20 30 40 50 60 70 80 90 100

Total runtime in Minutes

(a) The graph shows the total time needed to explore each of our
applications and the number of UI states explored at different
points of the analysis. Every point represents a restart of the
exploration component due to the incorporation of feedback
from the test engineer. Decreases in the number of Ul states
occur when UI actions are blacklisted — for instance, when
actions lead to the instantiation of file save or print dialogs.
The App1 application is not restarted during the exploration,
since it terminated without requiring feedback.

130

Low ——
High e
120

110

100

90

80 -

Ul-States

70

60 -

50 -

40

30

Proffix

(b) Unique UI states discovered during the exploration of the
test applications. The low privilege Ul states correspond to
states discovered either as a lower-privileged user, while
high privilege UI states correspond to those discovered as
an administrator.

Fig. 9: Time required for the analysis, taking into account test engineer feedback, as well as the number of unique UI states explored for each

application in the test set in low and high privilege states.

in all applications in the test set. The GEMs that were
found are drawn from all categories that we introduced in
Section III — i.e., information disclosure (G1), information
modification (G2), and callback execution (G3). An overview
of the incidence of each category of GEM is shown in Table I,
which further highlights the number of dangling information
disclosures and distinguishes between transient and persistent
modifications. GEM candidates that are not confirmed are
widgets that can be manipulated, but that do not provide
access to the target functionality. This can be the case due
to some additional check in the application, not necessarily a
security check. In the remainder of this section, we discuss
the details of the particular GEMs we found in the context of
each application.

1) Proffix: For the Proffix application, our analysis discov-
ered 33 distinct GEM candidates. 23 of these were information
modification GEMs in textfields or other editable widgets,
while the remaining 10 were callback executions associated
with button-style widgets.

Of the 23 modification GEMs, 17 were automatically
confirmed during the checking phase. One additional mod-
ification candidate was confirmed as a mutation, where the
application accepted the input but mutated the data prior to
storing it. This mutation was due to the application performing
input validation on input to the textfield. In particular, the
textfield was intended to accept date entries, but performed
an automatic conversion from integers to a valid date. Two
additional modification candidates were manually confirmed
where again, due to input validation, very specific input was
required for confirmation. In these cases, input values were
expected to be GPS coordinates.

Of the 10 callback GEMs, seven were automatically con-
firmed by the implementation, while one out of the remaining
three was confirmed manually.

Since Proffix does not support temporary privilege escala-
tion, there is no possibility for dangling data GEMs where
sensitive data remains in Ul elements after a temporary privi-
lege escalation.

The GEMs discovered by the analysis enable attackers to
modify data stored in the application’s database that normal
users are not authorized to, completely bypassing the access
control scheme that the developers of the application intended.

2) App1: The analysis discovered two callback execution
GEM candidates in the App1 application. The checking phase
automatically confirmed both GEMs.

The analysis further discovered 44 information disclosure
GEMs across a number of top-level windows. The design of
the UI for the App1 application was unique in the test set, as
the application creates a large number of windows, dialogs,
and message boxes at application startup and simply shows or
hides them as necessary during execution.

The callback GEMs identified during the analysis allows
attackers to create new entries and delete existing entries in the
application’s database, despite the fact that the low privilege
user was not authorized to do so. The disclosure GEMs, on
the other hand, enable a wide range of attacks. One of the
most critical of these is the fact that the account management
window could be accessed by attackers, since it is created at
startup and simply hidden from view. Therefore, an attacker
could modify the visibility attribute on this window to directly
access user credentials — i.e., usernames and passwords — and

GEM Candidates

Automatically Confirmed Manually Confirmed

Application Disclosure Modification Callbacks Disclosure Modification Callbacks Modification Callbacks Runtime
App1 44 - 2 44 - 2 51 sec
App2 1 1 8 - 4 - 2 205 sec
Proffix - 23 10 17 7 3 1 666 sec
Total 45 24 20 44 17 13 3 3

TABLE I: Statistics for GEM identification, automatic confirmation, manual confirmation, and total runtime for each application. Manually
confirmed modification GEMs correspond to mutated inputs due to input validation.

log into the application. However, the administrator password
was not included in this list.

The analysis also discovered one dangling information
disclosure GEM in App1. In this case, when a user temporarily
elevates privileges to administrator, the application prompts
the user to provide the administrator password. After the user
has dropped privileges, however, the administrator password
remains in this authentication prompt. Therefore, by modifying
the visibility attributes of that prompt, an attacker could re-
cover the administrator password and gain full privileges to the
application and its data. One concrete scenario for launching
this attack would be for an authorized low privilege user to call
a supervisor and ask her to perform an administrative task that
requires elevation of privilege. After the supervisor has logged
out, the low privilege user could then recover the administrator
password left in the prompt.

3) App2: The analysis identified eight callback execution
GEM candidates and one modification candidate in the App2
application. The checking phase automatically confirmed four
callback GEMs, and manual testing confirmed an additional
two callback GEMs. In the manual examination, we discovered
that one of the unconfirmed callback GEM candidates was
protected by an access control mechanism that checked if the
administrator is logged in. If not, the application displayed a
dialog with an error message explaining that the functionality
is only accessible by the administrator. The write candidate,
however, was neither confirmed during the checking phase nor
through manual testing.

One of the callback GEMs allows modification of specific
elements of all employee records. Another callback GEM
provides the capability to export the entire employee database
that contains recorded work time, scheduled business trips, and
vacation days.

Finally, the analysis discovered one dangling information
disclosure GEM in App2. The vulnerable widget is a list
view element that holds the entire employee database, which
includes all details of every employee. As with App1, this GEM
requires a temporary elevation of privilege to the administrator
role. When this occurs, the vulnerable widget is populated
with the contents of the employee database. After administrator
privileges are dropped, the widget still contains the employee
data, which can be accessed by simply modifying the widget’s
visibility attribute.

F. Vulnerability Disclosure

All of the vulnerabilities discovered during the course of
our experiments have been reported to the respective ven-

dors. The developers of Proffix acknowledged our findings
and indicated that they were unaware of the GEM issue. In
particular, they were aware that widgets could be manipulated
from outside the application, but were unaware of the security
implications. They further indicated that they will specifically
address the subject of GUI element misuse in their next
major release. We have not received acknowledgment nor
confirmation of the vulnerabilities we discovered in App1 and
App2 from the developers of these applications. Therefore, we
blinded the applications to prevent premature disclosure.

G. Countermeasures

We briefly investigated possible countermeasures against
the attacks we describe in this paper. The most effective reme-
diation would be to separate access control enforcement from
the presentation layer — in effect, to introduce a proper refer-
ence monitor into the application logic. However, this could
require substantial development time for legacy programs of
any appreciable complexity. Instead of having developers build
application-specific access control as part of their application
logic, we anticipate that language-based policy specifications
could be one scalable and secure mechanism for automatically
implementing a reference monitor for GUI-based applications.

A partial solution that is perhaps less intrusive than
retrofitting a full reference monitor would be to modify vul-
nerable applications to remove widgets that are not currently
active instead of simply disabling or hiding them. This would
be effective in the case of callback execution GEMs, but might
not always be possible without a more invasive rewrite of
the application, as in the case of a textfield that is used for
modification of data in a high privilege mode and to display
read-only data in a low privilege mode.

One possible lightweight countermeasure would be to run
applications as a different operating system-level user. At
least in the case of Windows, this would prevent the attacks
from modifying the Ul of vulnerable applications using the
SendMessage functions. However, this countermeasure would
only be effective if the local user does not have access to the
application’s OS user, and additionally that the local user does
not have access to OS-level administrator privileges.

In general, application developers should not rely on the
GUI to store runtime information and should rather treat
widgets and the data stored within them as untrusted user
input. Therefore, developers must implement at least basic
input validation in the application’s code that handles the GUI.
Furthermore, to avoid data leaks developers should only create
windows and widgets at the time a specific Ul is needed.

Windows and widgets should be destroyed after they are
no longer needed. In a client/server setting, access control
must be implemented on the server side. Client-side access
control should be treated as part of the application’s usability
component. It should only exist to guide the user, and to
help him understand what an application considers to be well-
formed input.

VII. Related Work

Concepts such as vulnerability testing, test case generation,
fuzzing, and user interface testing are well-known in the
software engineering and vulnerability analysis fields [3], [4],
[11]. When analyzing web applications for vulnerabilities,
black-box fuzzing tools [1], [8], [28] are often used due to their
ease of use. Such scanners typically look for vulnerabilities
such as cross-site scripting and SQL injections In addition to
web-specific scanners, there exists a large number of more
general vulnerability detection and security assessment tools.
Most of these tools, such as Nessus [27] and Nikto [20], rely
on a repository of known vulnerabilities that are tested. Other
work [6], [5] in the area of security of web applications focused
on client-side parameter tampering as a way to attack web
applications. GEM Miner, in contrast, specifically focuses on
the problem of GUI element misuse that, to our knowledge,
has not been studied to date.

Besides application-level vulnerability scanners, there are
also tools that operate at the network level, e.g., nmap [13].
These tools can determine the availability of hosts and services
accessible on those hosts. However, they are not concerned
with higher-level vulnerability analysis. There are also a large
number of static source code analysis tools [14], [26], [29] that
aim to identify vulnerabilities. These tools are orthogonal to
GEM Miner.

A field that is closely related to our work is automated
test case generation. The methods used to generate test
cases can be generally summarized as random, specification-
based [21], [23], and model-based [22] approaches. The well-
known black-box fuzzing technique falls into the category
of random test case generation. Similarly, we also generate
test cases and analyze software for security-relevant bugs.
However, we specifically look for GEM vulnerabilities that
existing work does not address.

WinRunner [12], a well-known application testing tool,
allows a human tester to record user actions such as key presses
and mouse clicks and then replay these actions for testing.
We note that the testing workflow WinRunner is designed
for is not fully automated in terms of vulnerability discovery.
The developer needs to write scripts and create checkpoints
to compare the expected and actual outcomes from the test
runs. Our test execution is similar to WinRunner in the sense
that we also test for expected and actual outcomes. However,
our approach automates vulnerability discovery and, in many
cases, confirmation, and also is targeted specifically at Ul-
related privilege escalation vulnerabilities.

Autolt [2], is a popular, free scripting language for Win-
dows GUI automation. Autolt works similarly to WinRunner,
but is designed for GUI automation rather than GUI testing.

In software engineering, graphical user interface testing
consists of the process of testing a software application’s

graphical user interface to ensure that it meets written specifi-
cations. Often, test cases are used to drive the testing process.
A number of prior efforts have examined how such test
cases can be automatically generated. Several techniques have
been proposed to automatically generate test suites that are
complete, and that simulate user behavior [16], [10], [15]. Note
that none of the works in the domain of user interface testing
has investigated the problem of GUI element misuse (GEM).

One relevant Ul testing project is GUITAR, an automated
system to test Ul-driven applications for programming er-
rors [19]. GUITAR consists of a GUI ripper and a number
of test components. The GUI ripper is used to extract the Ul
states of an application, as well as the necessary Ul interactions
to reach each state. The test components works similarly
to a fuzzer, permuting over the covered Ul interactions to
detect generic software errors such as application crashes. In
comparison to GUITAR, our exploration component is similar
to GUITAR’s GUI ripper, but in addition to UI states, we also
focus on security-relevant widget attributes such as visibility,
enabled status, and writable flags. Additionally, our analysis
focuses specifically on unauthorized privilege escalation in
user interfaces in the form of GEMs, as opposed to more
general program crashes.

Other relevant work investigates GUI testing using com-
puter vision [9]. Here, a system has been built that uses
computer vision to identify changes in the Ul to determine
if test cases succeeded or failed. This line of work is tailored
towards functional testing of applications rather then finding
security vulnerabilities. In our case, we cannot rely on visual
observation since specific widgets attributes are not visually
indicated.

We note that our checker component only shares very few
similarities with traditional Ul software testing components.
The main commonality is that our approach automatically
interacts with the UI of the target application. In contrast
to existing techniques, however, our checker component is
provided with a set of GEM candidates — i.e., potentially
vulnerable widgets — the sequence of Ul actions to reach these
widgets, a test rule for detected widget types, and the expected
results for a successful exploit. After the test is executed, the
result is compared with the expected outcome and, if there is
a match, the widget is reported to be a GEM vulnerability.

In 2002 and 2003, the Shatter attack was proposed [24],
[18] that presented a new attack against Windows applications
by exploiting the Ul subsystem. This attack was based on
removing the limits of textfields in the Ul and providing
extra input as a part of a memory corruption vulnerability.
In cases where the Ul was running with elevated privileges
(e.g., antivirus software), the attack could be used for OS-
level privilege escalation. In response, Microsoft disabled Ul
manipulation across different OS-level user accounts. Note that
in contrast to Shatter attacks, our approach does not manipulate
the low-level internal bounds set in the implementations of Ul
elements in the OS. Rather, we focus on finding vulnerabilities
that stem from developers blindly trusting UI elements for
implementing access control logic in their applications.

VIII. Conclusion

In this work, we have introduced GEMs, or instances of
GUI element misuse, as a new class of security vulnerability in
GUI-based applications. GEMs arise when applications misuse
the user interface as a mechanism for enforcing access control
schemes when multiple privilege levels exist within the logic
of an application.

We enumerated several classes of GEMs that can occur,
and describe a general human-assisted technique that auto-
mates most of the process of discovering and confirming the
presence of GEMs in applications.

We also built an implementation of this technique called
GEM Miner to analyze applications targeting the Microsoft
Windows platforms for GEMs. Our implementation demon-
strates that it is possible to quickly discover exploitable
security-relevant bugs in user interfaces with minimal effort on
the part of test engineers. Using GEM Miner, we discovered
and confirmed a number of previously-unknown GEMs in
commercial Windows applications.

We view the work presented here as a first step towards
automatic techniques for securing access control vulnerabilities
in GUI-based applications. It is our hope that further work will
improve upon GEM Miner, and that testing for GUI-based
vulnerabilities will become a standard step in the application
testing and security assessment process.

Acknowledgements

This material is based on research sponsored by DARPA
under agreement number FA8750-12-2-0101. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. This work was also supported by the Office
of Naval Research (ONR) under grant N000140911042, and
by Secure Business Austria. The authors would like to thank
Michael Weissbacher and Matthias Neugschwandtner for their
insightful comments while writing this paper.

References

[11 Acunetix, “Acunetix Web Vulnerability Scanner,” http://www.acunetix.
com/, 2008.

[2] AutoltConsulting Ltd. (2013) Autolt. http://www.autoitscript.com.

[3] B. Beizer, Software System Testing and Quality Assurance.
Nostrand Reinhold, 1984.

[4] ——, Software Testing Techniques. Van Nostrand Reinhold, 1990.

[5] P.Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakr-
ishnan, “NoTamper: Automatic Blackbox Detection of Parameter Tam-
pering Opportunities in Web Applications,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS),
2010.

[6] P. Bisht, T. L. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan,
“WAPTEC: whitebox analysis of web applications for parameter tam-
pering exploit construction.” in Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security (CCS), 2011.

[7]1 J. Brown. (2012, July) WinSpy++. http://www.catch22.net/software/
winspy-17.

[8] Burp Spider,
spider/, 2008.

[9] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI Testing Using Computer
Vision,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2010.

Van

“Web Application Security,” http://portswigger.net/

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]
[26]
[27]
(28]

[29]

J. Clarke, “Automated test generation from a Behavioral Model,” in
Proceedings of Pacific Northwest Software Quality Conference, 1998.
C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Sofiware
Engineering. Prentice-Hall International, 1994.

HP/Mercury Interactive. (2003) WinRunner. http://support.openview.
hp.com/encore/wr.jsp.

Insecure.org,
nmap/, 2008.
N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper),” in [EEE
Symposium on Security and Privacy (Oakland), 2006.

A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI Test
Case Generation Using Automated Planning,” IEEE Transactions on
Software Engineering, pp. 155-155, 2001.

A. M. Memon, M. Pollack, and M. Soffa, “Using a Goal-driven
Approach to Generate Test Cases for GUIs,” in Proceedings of the
21st International Conference on Software Engineering (ICSE), 1999.
Microsoft. (2013) Visual Studio Spy++. http://msdn.microsoft.com/en-
us/library/dd460756.aspx.

B. Moore. (2003, October) Shattering by Example.
//www .blackhat.com/presentations/bh-usa-04/bh-us-04-moore/bh-
us-04-moore-whitepaper.pdf.

“NMap Network Scanner,” http://www.insecure.org/

http:

B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an in-
novative tool for automated testing of gui-driven software,” Automated
Software Engineering, pp. 1-41, 2013.

Nikto, “Web Server Scanner,” http://www.cirt.net/code/nikto.shtml,
2008.

J. Offutt and A. Abdurazik, “Generating Tests from UML Specifi-
cations,” Second International Conference on the Unified Modeling
Language, 1999.

——, “Using UML Collaboration Diagrams for Static Checking and
Test Generation,” Third International Conference on UML, 2000.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating Test
Data from State-based Specifications,” Journal of Software Testing,
Verification and Reliability, 2003.

C. Paget. (2002, August) Exploiting design flaws in the Win32 API
for privilege escalation. http://www.thehackademy.net/madchat/vxdevl/
papers/winsys/shatter.html.

PROFFIX Software AG. (2013) PROFFIX. http://www.proffix.net.

Z. Su and G. Wassermann, “The Essence of Command Injection Attacks
in Web Applications,” in Symposium on Principles of Programming
Languages, 2006.

Tenable Network Security, “Nessus Open Source Vulnerability Scanner
Project,” http://www.nessus.org/, 2008.
“Web Application Attack and Audit
sourceforge.net/.

Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities in
Scripting Languages,” in /5th USENIX Security Symposium (USENIX
SEC), 2006.

Framework,” http://w3af.

