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Abstract—Secure deletion of data from non-volatile storage
is a well-recognized problem. While numerous solutions have
been proposed, advances in storage technologies have stymied
efforts to solve the problem. For instance, SSDs make use of
techniques such as wear leveling that involve replication of
data; this is in direct opposition to efforts to securely delete
sensitive data from storage.

We present a technique to provide secure deletion guar-
antees at file granularity, independent of the characteristics of
the underlying storage medium. The approach builds on prior
seminal work on cryptographic erasure, encrypting every file
on an insecure medium with a unique key that can later be
discarded to cryptographically render the data irrecoverable.
To make the approach scalable and, therefore, usable on
commodity systems, keys are organized in an efficient tree
structure where a single master key is confined to a secure
store.

We describe an implementation of this scheme as a file-
aware stackable block device, deployed as a standalone Linux
kernel module that does not require modifications to the
operating system. Our prototype demonstrates that secure
deletion independent of the underlying storage medium can
be achieved with comparable overhead to existing full disk
encryption implementations.

1. Introduction

Secure deletion of data from non-volatile storage is a
heavily-studied problem. Researchers and developers have
proposed a plethora of techniques for securely erasing data
from physical media, often employing methods such as
overwriting files containing sensitive data in-place, encrypt-
ing data with temporary keys that are later discarded, or
hardware features that scrub storage blocks. We refer readers
to prior work [25] for an in-depth discussion of previous
literature on this topic.

Despite these extensive efforts, advances in storage tech-
nologies and characteristics of modern hardware still pose
significant difficulties to achieving irreversible data deletion.
For instance, Solid State Drives (SSDs) often utilize hard-
ware controllers inaccessible to the outside world. These
controllers can redirect I/O operations performed on log-
ical device blocks to arbitrary memory cells in order to

implement wear leveling and minimize the effects of write
amplification. As a result, many secure deletion methods
that base their security on behavioral assumptions regard-
ing older mechanical disk drives are rendered ineffective,
because tracking and removing sensitive data in modern
settings is often infeasible, and sometimes impossible.

In the face of these emerging challenges, recent re-
search has adapted secure deletion technologies to new
applications. For example, Reardon et al. [26] present an
encrypting file system that guarantees secure erasure on
raw flash memory used in smartphones. However, secure
deletion remains a challenge on blackbox devices such as
the aforementioned SSDs, which only allow access to their
storage through opaque hardware controllers that translate
I/O blocks in an unpredictable manner.

In this work, we present a technique that provides se-
cure deletion guarantees at file granularity, independent of
the characteristics of the underlying storage medium. Our
approach is based on the general observations in previous
work that secure deletion cannot be guaranteed on a black-
box storage medium with unknown behavior. Therefore, we
instead bootstrap secure deletion using a minimal master key
vault under the user’s control, such as a Trusted Platform
Module chip or a smartcard.

Our approach is an evolution of the cryptographic era-
sure technique proposed by Boneh and Lipton [8]. At a high
level, we encrypt every file on an insecure medium with a
unique key, which can later be discarded to cryptographi-
cally render a file’s data irrecoverable. Note that while these
keys would need to be persisted to keep the files accessible
in the future, they cannot be stored on the same medium
together with the files since that would then prevent us from
securely deleting the keys.

To address this problem, we compress the keys into a
single master key that is never persisted to insecure storage,
but instead is evicted to the master key vault. To this end,
we utilize a key store organized as an n-ary tree (i.e., a
tree where each node has up to n children), where every
node represents a unique encryption key. We term this key
store a file key tree (FKT). Keys corresponding to leaf
nodes each encrypt a single file stored on the blackbox
medium, and in turn parent nodes encrypt their children
nodes. This tree hierarchy compresses the master secret to a
single encryption key, the root node, which is never persisted



to the blackbox storage but is instead easily evicted to the
master key vault. In contrast, the rest of the tree nodes (i.e.,
encrypted keys) are stored together with the files on the
insecure device.

In this model, securely deleting a file from an FKT of
capacity |F | involves decrypting n logn |F | nodes, regener-
ating logn |F | keys, and re-encrypting the n logn |F | nodes
with the new keys. During this process, the master key is
also securely wiped from the vault and replaced with a fresh
one. In this way, the previous path leading to the deleted file
will be rendered irrecoverable.

We implemented this technique as a file-aware stackable
block device, which is deployed as a stand-alone Linux
kernel module that does not require any modification to
the operating system architecture. As the name implies,
our implementation exposes a virtual block device on top
of an existing physical device installed on the computer.
Users can format this drive with any file system and interact
with it as they would normally do with a physical disk.
Our block level implementation is able to capture higher-
level file system information to identify file blocks, while
providing I/O performance significantly better than a file
system-level solution.

The contributions of this paper are as follows.
• We present a secure deletion technique called ERASER

that builds on the cryptographic erasure primitive. In
contrast to previous work, ERASER guarantees per-
formant irrecoverability of deleted files on blackbox
storage media with unknown characteristics, such as
modern SSDs equipped with opaque hardware con-
trollers. We achieve this property by bootstrapping
cryptographic erasure from a cheap, commodity exter-
nal key vault such as a Trusted Platform Module chip
or smartcard.

• We discuss the design choices involved in realizing our
approach in practice, and present a prototype imple-
mentation of ERASER as a file-aware stackable block
device for Linux.

• We demonstrate that ERASER can provide full disk
encryption on top of secure file deletion, and exhibits
comparable performance to dm-crypt, the standard
Linux disk encryption solution.

Availability. Source code of ERASER is licensed under
GPLv2 and GPLv3, and is publicly available on the primary
author’s website.

2. Background & Related Work

2.1. Related Work

Secure deletion approaches have been investigated at
several different layers of abstraction. We refer the inter-
ested reader to a comprehensive classification of prior ap-
proaches [25], while in the following we summarize relevant
related work.

Hardware Techniques. The lowest point at which se-
cure deletion can be performed is at the physical layer. In the

most direct interpretation, secure deletion can be performed
through destruction of the physical medium through various
means. Scenarios where these methods apply are out of
scope for this paper.

Secure deletion can also be performed at the hardware
controller. For magnetic media, SCSI and ATA controllers
provide a Secure Erase command that overwrites every phys-
ical block. Some SSDs also provide such a command. How-
ever, this is a coarse-grained approach to secure deletion that
is difficult to improve upon since, without knowledge of the
file system, controllers cannot easily distinguish data to be
preserved from data to be deleted. Furthermore, prior work
has shown that hardware-level secure deletion is not always
implemented correctly [31].

File System-based Solutions. The next layer of abstrac-
tion is at the file system. Here, secure deletion approaches
can take advantage of file system semantics, but are poten-
tially restricted by the device driver interface.

One class of techniques is aimed at devices for which
the operating system can reliably perform in-place updates
(e.g., magnetic disks). Many specific techniques have been
proposed, including queuing freed blocks for explicit over-
write [7], [18], [19] as well as intercepting unlink and
truncation events for user space scrubbing [19].

Other techniques are intended for devices such as raw
flash memory, where there is asymmetry between the mini-
mum sizes of read or write and erase operations (described
below). A notable example is DNEFS [26], which modifies
the file system to encrypt each data block with a unique
key and co-locates keys in a dedicated storage area. Secure
deletion is implemented by erasing the current key storage
area and replacing it with a new version. During this replace-
ment, keys corresponding to deleted data are not included
in the new version.

However, a fundamental underlying assumption of these
approaches – that the operating system can directly read
or write physical blocks as in the case of magnetic hard
drives or raw flash memory – is not valid for modern storage
devices such as SSDs as we describe below.

User-level Tools. User space is the highest layer of
abstraction from which secure deletion can be attempted.
These approaches are restricted to the file system API
exposed by the operating system to accomplish their task.
One example of such an approach is Secure Erase [16], an
application that simply invokes the Secure Erase command
on a storage controller. However, as discussed above, this is
not a reliable secure deletion mechanism.

User-level tools can also attempt to explicitly overwrite
data to be securely deleted [12], a popular approach first pro-
posed by Gutmann [15]. However, these approaches assume
that overwriting a block using the interface provided by
the operating system guarantees that all copies of that data
on physical storage will be overwritten on the underlying
physical medium.

A third user space secure deletion approach is to fill
the free space of a file system [6], [14]. The motivation
for this approach is to proactively overwrite remnants of
potentially sensitive data on storage left in the free block



pool. However, this approach is also limited by the operating
system actually providing the capability to overwrite all free
blocks on storage, as well as the system’s ability to expose
all physical blocks to user space.

Cryptographic Erasure. Along a different axis, numer-
ous techniques utilize cryptographic erasure as a fundamen-
tal primitive. Put simply, these techniques reduce secure
deletion of data to secure deletion of a key encrypting that
data. Under computational hardness assumptions, encrypted
data without the corresponding key is infeasible to recover.
Prominent examples of this include Boneh’s secure deletion
approach for offline data such as tape archives [8], Lee’s
secure deletion approach for YAFFS [21], DNEFS [26], and
TrueErase [9], [10]. Note that, these works are not com-
patible with flash translation layers implemented in opaque
hardware controllers, excluding them from use on typical
SSDs.

Another approach to cryptographic erasure was proposed
by Tang et al. [30]. In CleanOS, sensitive data on mobile
devices is encrypted and the corresponding key is evicted to
the cloud. The fundamental assumption underlying this work
is that the cloud is more trustworthy than the user’s device,
which is not always the case. In another work, Lacuna [11]
leverages cryptographic erasure to implement ephemeral
channels that eliminate privacy leaks into operating system
drivers.

Yet another example of cryptographic erasure was pro-
posed by Swanson et al. [29], this time at the controller
level. Here, a cryptographic key is used to encrypt the entire
physical device, and this key is stored within a dedicated
memory also located on the device. Secure deletion is per-
formed by replacing this key, resulting in a coarse-grained
secure deletion of all data on storage.

Reardon et al. [27] also present a graph theoretic ap-
proach to analyzing and proving the security of any tree-like
approach to secure deletion involving encryption and key
wrapping. They provide an implementation of an instance
of this class of approaches as a B-tree that can provide file-
level deletion granularity, and exhibits the potential for good
performance when combined with a suitable caching policy.
This work is closely related to ours, and therefore, we defer
a direct comparison between them to Section 6.

2.2. Flash Translation Layers

Flash memory is a common storage technology due to
its low power consumption, density, and efficient random-
access characteristics. In a significant departure from classi-
cal storage technologies such as magnetic hard disks, flash
memory possesses an asymmetry between the sizes of read
and write operations versus the size of erasure operations. In
particular, data is read and written at page granularity (e.g.,
4K), but is erased at an erase block granularity (typically
256K). Furthermore, flash memory cannot be written to
unless the page, and its enclosing erase block, has first been
erased. Since this operation incurs significant wear, wear
leveling is performed wherein erasure operations are evenly
distributed across flash erase blocks in order to maximize

the device’s service lifetime. This leads to the phenomenon
of write amplification, where one logical I/O operation leads
to multiple physical I/O operations.

For raw flash devices intended to be directly exposed
to an operating system, wear leveling is expected to be
performed by the device driver. However, devices such as
solid-state drives (SSDs) do not expose this low-level inter-
face. Instead, a flash translation layer (FTL) is interposed to
provide a traditional sector-based interface to the operating
system. For an SSD, the FTL is implemented within the
hardware controller, and in such cases the operating system
does not have direct access to physical flash pages, erase
blocks, or visibility into the wear leveling process. In fact, in
order to accommodate expected wear and account for failed
erase blocks, modern SSDs are typically over-provisioned
by 25%.

Since FTLs obscure physical flash erase blocks and wear
leveling leads to write amplification that results in signifi-
cant amounts of duplicated data, existing secure deletion
techniques are incompatible with such devices.

2.3. Motivation

While prior secure deletion approaches work under cer-
tain circumstances, almost all unfortunately do not address
common cases where the operating system cannot guarantee
that physical blocks are not duplicated on storage, or that
logical blocks map directly to physical blocks, as in the
case of FTL-based devices such as SSDs. Approaches that
remain, such as whole-device secure erase commands or
cryptographic erasure [29] only operate at the coarsest gran-
ularity possible. Others require integration of secure deletion
capabilities directly into the FTL layer (e.g., [17]), through
the modification of hardware controllers.

Our work aims to fill this important gap for arbitrary
storage devices, by satisfying the following design goals.

1) Secure deletion must not rely on the assumption that
blocks are not duplicated without its knowledge.

2) Secure deletion must not rely on the assumption that
logical block addresses map one-to-one to physical
block addresses.

3) Secure deletion must operate at a useful level of gran-
ularity – in our case, at the file level.

2.4. Threat Model

The threat model we assume in this work is essentially
a notion of forensic security. That is, while the system
computes over sensitive data we assume that an adversary
is not present on the system and cannot examine or tamper
with this data. We also assume a trusted computing base
(TCB) composed of a subset of the system’s software that
includes the kernel and a small set of high-privilege user
space utilities. The TCB also includes a subset of the under-
lying firmware and hardware, in particular a secure storage
area described later in the paper such as a Trusted Platform
Module (TPM) chip or smartcard. However, storage con-
trollers are considered to be untrusted, and no assumptions



are made as to the kind of physical medium used in the
system. We assume that an adversary can later gain access to
the system, up to and including physical access. Regardless,
the secure deletion approach we describe in the remaining
sections guarantees that attackers cannot recover data that
was deleted during prior computation.

3. System Design

3.1. Naı̈ve Approach

A straightforward approach to secure file deletion us-
ing cryptographic erasure is to simply generate random
encryption keys for each file. Any data written to storage
would be first encrypted with its associated file key, and
decrypted when read from storage. Securely deleting a file
is then reduced to securely deleting the corresponding file
key – i.e., cryptographic erasure where, under computational
hardness assumptions, it should be infeasible for an attacker
to recover the data without the key.

This approach, however, has a fatal flaw: there is no
way to assure that file keys are securely deleted themselves.
That is, file keys must be persisted to storage across system
reboots or failures, and thus must themselves be encrypted
with a master key. This is clearly a recursive problem.
Therefore, the approach must rely, instead, upon a trusted
element to serve as secure storage for the master key. We
term this master key secure storage the master key vault,
which must satisfy the following properties. The vault must
(i) be large enough to store a master key, (ii) allow the
system to perform encryption and decryption operations
using the stored master key, and (iii) allow the system to
update the stored master key with a new key.

This leads to a second problem: the simple two-level
hierarchy described above implies that deleting a single file
requires re-encrypting all file keys. To understand why, con-
sider that on modern storage devices data might be persisted
to multiple physical locations due to phenomena such as
flash wear leveling, and that such processes are completely
outside the control of an operating system. Therefore, in
order to ensure that file data is irrecoverable, the master key
must itself be rotated, and the old key securely deleted from
the vault such that there is no computationally feasible way
for an attacker to decrypt block data recovered from physical
storage. Since the master key must be rotated, all file keys
must be re-encrypted before being persisted to disk, leading
to a phenomenon we term encryption amplification. This
is an expensive operation and should be avoided for any
practical system (see Section 4 for a concrete example).

3.2. File Key Trees

To address the above problems identified in the naı̈ve
approach, ERASER’s design incorporates two key elements:
(i) a master key vault, and (ii) a file key tree (FKT). The
master key vault has the properties described above, which
allows for master keys to be rotated with secure deletion of

the old key. The FKT, on the other hand, avoids the problem
of encryption amplification by bounding the number of
keys that must be re-encrypted each time the master key
is rotated.

An FKT is an n-ary tree – i.e., a tree where each
node has up to n children – of height m. At the root is
the master key, which is stored in the master key vault, is
never released from the system TCB, and is never persisted
to other storage in any form. Internal nodes of the tree
correspond to randomly-generated encryption keys. Each
node key encrypts the keys of its children. Leaves of the
tree correspond to file encryption keys. An example of an
n-ary FKT with m = 2 is shown in Figure 1.

FKT Space Complexity. To represent |F | files, an FKT
with at least |F | leaves must be created. Therefore, the size
of an FKT is bounded by

O
(
nblogn |F |c + |F |

)
.

This is simply the number of internal nodes required to rep-
resent |F | leaves in an n-ary tree plus the leaves themselves.
In practice, the root key will be evicted to the dedicated
master key vault, while the remaining levels of the FKT
will be persisted to disk.

FKT Operations & Time Complexity. Accessing a
file encrypted using an FKT involves collecting a chain
of encryption keys from the corresponding FKT leaf node
to the master key and, performing a series of decryption
operations to recover the file encryption key. Therefore, the
number of decryption operations to obtain access to a file
is bounded by

O (dlogn |F |e) .

Deleting a file, similarly to file access, first requires
collecting a chain of encryption keys from the corresponding
FKT leaf node to the master key. However, the next step
of this process is to: (i) randomly generate new encryption
keys for each node along the path to, and including, the
master key node; and, (ii) re-encrypt the existing keys at
direct children (i.e., non-recursively) for each node along
the previously identified path in the FKT. Therefore, this
operation’s time complexity is bounded by

O (ndlogn |F |e) .

This process is explained in a concrete example in
Figure 2 for n = 2, |F | = 4.

4. Implementation

We implemented the general secure deletion approach
presented in the previous section in a tool called ERASER,
which operates at the block I/O layer of Linux but provides
secure deletion guarantees at file granularity. ERASER does
not require modifications to Linux, and can be distributed
and deployed as a stand-alone kernel module that works on
any Linux distribution, with any file system. Our prototype
could easily be extended from user space to support var-
ious types of secure external storage such as TPM chips,
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Figure 1. Structure of an n-ary FKT with m = 2. The root node is represented by a master key M stored in a secure master key vault. Each internal
node contains a key encrypted by the parent key. Leaf nodes correspond to file encryption keys.
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Figure 2. Secure deletion using an FKT with n = 2, |F | = 4. Step 1: The initial state of the tree contains encryption keys for four files. Step 2: When
the user decides to delete file 3, a traversal of the FKT from the corresponding leaf node for file 3 to M is performed. Starting below the master node,
each node’s key is decrypted using the parent’s key. Additionally, all other direct children of the current node are decrypted. Decrypted nodes are shown
here in bold. Step 3: Keys along the direct path from file 3’s leaf node to the master key node are randomly regenerated. These nodes have a dotted
outline. The old master key M is securely deleted from the vault, and a new master key M ′ is stored. Step 4: Keys at direct children of nodes on the
path from Step 3 are re-encrypted to obtain the new FKT, which is persisted to disk. Nodes from the pruned branch as it existed at Step 1 might remain
on insecure storage, but since M has been erased it is computationally infeasible for an attacker to decrypt data along that path.
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smartcards, or tokens with secure storage capabilities. In
our implementation, we specifically utilize commodity TPM
chips that are present on many modern motherboards.

Here, we first discuss various implementation alterna-
tives to realize our approach, and explain our decision to
choose the block I/O layer for our prototype. We then
present technical details and optimization considerations
to build a performant and practical implementation. We
refer readers to ERASER’s source code for other low-level
implementation details that we omit for brevity.

4.1. Alternatives & Our Philosophy

As discussed, there is a myriad of tools and techniques
that implement secure deletion capabilities at various layers
of a computer system. To assess the advantages and draw-
backs of each of these options, we first briefly describe the
processing of a file access request through the various Linux
I/O subsystems.

In Linux, a file access initiated by a user space appli-
cation reaches the kernel through one of the I/O-related
system calls, such as read, or write, which then passes
this request to the Virtual File System (VFS). The VFS is a
unifying abstraction layer for file system operations, while
the actual I/O operations defined by its API are implemented
by concrete file system instances such as ext4. File blocks
processed by a file system go through the Page Cache, where
they are cached to improve I/O performance on repeated
access requests. Finally, I/O requests are passed to the
block I/O layer, and are served by specific device drivers
that control the storage hardware. This entire procedure is
illustrated in Figure 3.

Unsatisfactory Solutions. While it is relatively easy to
develop user space solutions instead of trying to understand

operating system internals, the I/O-related system calls offer
minimal control over how data blocks are processed at lower
layers, limiting the effectiveness of such solutions. Likewise,
in this work, we refrain from directly modifying concrete
file system implementations or device drivers. While imple-
menting our approach at those layers is possible, choosing
a specific instance to adapt to our needs would limit the
impact of our system. Or else, modifying and maintaining
every single file system or driver available in Linux would
be a high-effort and bug-prone affair.

Despite the issues mentioned above, the file system layer
is still a natural place to enforce secure deletion of files.
By definition, the file system is already aware of all the
data blocks corresponding to any given file, and also has
full control over file metadata, all of which significantly
ease development. One solution that alleviates the issues
tied to working with a specific file system, while also
leveraging the advantages of the file system layer, is utilizing
a stackable file system. These special file systems reside
on top of another file system and transparently interpose
on the passing I/O requests, presenting a viable option to
implement secure deletion. For instance, eCryptfs [3] is
a stackable encrypting file system distributed with Linux,
and could easily be adapted to our approach. Unfortunately,
stackable file systems often come with a significant per-
formance overhead. For example, recent research [24] and
benchmarks [20] show that eCryptfs performs considerably
worse than block-layer encryption. Since building a practical
system is one of our goals, this is not an acceptable solution.

Another seemingly viable alternative is to implement
our system inside the page cache. However, examining
the kernel internals reveals that page cache functions that
manipulate file blocks (e.g., pageread and pagewrite) are
actually provided by file systems. Furthermore, Linux gives
applications the ability to perform direct I/O that bypass the
page cache. As a result, the page cache is also not a suitable
layer for our purposes.

Our Solution. In light of these considerations, we de-
cided to implement ERASER at the block device level in
a stackable block device driver (i.e., at the same layer as
dm-crypt in Figure 3). Similar to how stackable file systems
operate, stackable drivers intercept block I/O requests before
they reach the underlying drivers, and allow us to manip-
ulate them as necessary. The main advantage of a block-
layer approach is its performance (e.g., compare dm-crypt’s
performance to eCryptfs [20]).

At a first glance, it is not clear how file-level information
could be gathered at the block layer, or how physical sectors
on a device could be matched to logical file blocks. ERASER
closes this gap between the file system and block device
layers by leveraging the property that Linux represents every
file system object by a common data structure provided by
the VFS, the inode, regardless of the file system imple-
mentation. In this way, we can avail ourselves of the per-
formance benefits of operating on low-level device blocks,
while still retaining a high-level understanding of the file
system. Moreover, ERASER works under any Linux-native
file system and is compatible with any physical block device.
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4.2. System Overview

We implemented ERASER using device-mapper [2] in a
stackable block device driver. Device-mapper is a standard
Linux kernel framework that allows users to create stackable
drivers, and is used in technologies such as dm-crypt, LVM,
software RAID, and Docker. It maps existing physical block
devices onto new ones, and exposes these virtual devices
to user space via new device nodes, often found under
/dev/mapper/*. Users can then interact with these device
nodes in the usual way by formatting them with a file system
of their choice.

A high-level view of ERASER is illustrated in Fig-
ure 4. ERASER organizes file encryption keys in an FKT
as described, and stores them in a reserved section of the
underlying storage device. The master key, however, is never
persisted to this device; instead, it is confined to an external
secure store. Specifically, in our implementation, we store
it in the NVRAM area of a TPM chip installed on the
machine. ERASER then intercepts all block I/O operations in
flight, identifies which files those I/O blocks belong to, and
retrieves the appropriate keys to encrypt or decrypt the file
contents on the fly. When a file is deleted, its associated key
is discarded. Finally, the newly generated keys are written
to the key store, and a fresh master key is synced to the
TPM chip, overwriting the obsolete key.

4.3. I/O Manipulation

The kernel represents and tracks in-flight block I/O
operations with a data structure called a bio. Through
the device-mapper framework, each bio destined for an
underlying physical device is first handed to ERASER, where
we can freely manipulate them before passing them on to
the next device driver in the stack.

Identifying Files. The first task ERASER needs to per-
form is detecting whether a bio corresponds to a file system
operation. Thanks to the way Linux handles pages of a file

during I/O and the VFS layer which necessitates that every
file system object have an inode associated with it, this
task is possible without modifying the upper kernel layers
to propagate this information downwards.

Since there is a one-to-one mapping between inodes and
files, our implementation uses inode numbers to uniquely
identify files and find their corresponding encryption keys.
Whenever ERASER receives a bio, it iterates over all mem-
ory pages (i.e., data buffers in volatile memory) it points
to. Linux provides another related object per file, called
an address_space, that describes the mapping between
physical blocks on a disk, pages in memory, and the inode
owning these. By walking through this structure, ERASER
can match every page in a bio to a specific inode, check
whether the inode at hand corresponds to a file, and sub-
sequently identify the correct encryption key based on the
inode number. Otherwise, if the pages are found to have no
corresponding inode or an inode that represents a file system
object other than a file, that bio is simply remapped and sent
to the actual underlying device without further processing.

Writing Files. Once a bio corresponding to a file write
is identified, ERASER needs to retrieve the appropriate key,
encrypt the contents, and perform the write to the under-
lying device. However, simply iterating over the memory
pages pointed to by a bio and encrypting them in-place
is not sufficient. This is because the same memory pages
representing the write buffers are often also present in the
page cache. Thus, directly encrypting them would result in
ciphertext being served to user space from the cache with
future I/O requests, without our driver having an opportunity
to decrypt them. Even if we attempt to intercept cache hits,
it would be sub-optimal to decrypt the same contents with
every read.

To address this issue, ERASER makes a clone of the
original bio and all of its pages, and instead encrypts
the copied pages. Next, the cloned bio is asynchronously
submitted to the underlying device, while the original I/O
request is being stalled. Once ERASER receives notification
of a completed disk write through a callback, it marks
the original bio as completed as well, which automatically
signals the upper layers of a successful disk write. In this
way, the cached data remains untouched, and subsequent
file reads that result in cache hits do not require repeatedly
decrypting the same data buffers.

Reading Files. Handling of bio objects that represent
file reads is similar, with one difference. When ERASER first
intercepts the bio, the pages it points to are empty, ready to
be filled with data read from the disk. Therefore, ERASER
first needs to initiate the actual disk read, and decrypt the
data only once the operation is complete.

This is achieved by, once again, cloning the bio, and
submitting this clone for I/O to the underlying device while
the original is stalled. However, this time, it is not necessary
to allocate separate memory pages for the clone; instead,
the clone points to the original memory pages. Once we
receive notification of a completed read, ERASER retrieves
the appropriate key, decrypts the contents in place, and
signals completion of the original bio.



Cryptographic Operations. ERASER uses AES-256 in
CBC mode to encrypt file blocks. Every file is given a
unique initialization vector (IV), stored together with the
keys in the FKT. Since encryption is performed on a page-
by-page basis and pages of a file could be read or written in
any order, a page IV is derived from the file’s unique IV and
the file offset of the processed page. Finally, all random data
used by ERASER to regenerate encryption keys and IV after
a file deletion is generated using AES-256 in CTR mode.
This random stream is seeded by a key from the kernel’s
cryptographically secure random byte pool, and the cipher
is reseeded after every 1MB of data output.

4.4. Intercepting File Deletions

When an ERASER partition is created, its FKT is initial-
ized with randomly generated keys for all inodes1, and the
system is ready for use. Consequently, our system does not
need to track file creation events. Instead, we only monitor
file deletions, discard the appropriate keys in the FKT as
discussed in Section 3, and immediately generate new keys
for freed inodes, to be used by the next file that is assigned
the same inode number.

While this simplifies our implementation, intercepting
file deletion events from the block layer is still not a trivial
task. In particular, because a file deletion often only involves
changes to file system metadata, and no I/O operations
are performed on file blocks, the block I/O layer remains
oblivious to file deletions. We address this challenge with
the help of another Linux kernel framework, Kernel Probes
(kprobes) [4], which allows users to hook into the kernel
address space. We utilize this capability to trap execution at
the entry point of the vfs_unlink function, a choke point
inside the VFS for all deletion operations. Next, in our hook,
we access the original function’s arguments from the CPU
registers, retrieve a pointer to the deleted inode, and check
whether it represents a file object residing on an ERASER
partition. Once it is confirmed that a file on a relevant device
is being deleted, we then trigger the secure deletion process
and generate fresh keys for the freed inode.

4.5. Key Storage & Management

While ERASER’s key organization is based on the high-
level FKT design presented in Section 3, we also employ
optimizations specific to our implementation.

Due to the large size of an FKT, the majority of the
keys are stored on the disk at any given time and are
only accessed when required for a file access or secure
deletion. Because of this, the parameter n of the FKT
should be chosen to optimize disk I/O performance. In our
implementation, every node of the tree contains a 256-bit
encryption key and 128-bit IV, for a total size of 48 bytes.

1. For most Linux file systems, the maximum number of possible inodes
can be determined or predicted based on storage size. For exceptions where
the inode values can grow dynamically, a fixed value needs to be specified
by the user when formatting a drive.

To ensure that we perform disk I/O operations on block
boundaries, we set n to the maximum number of tree nodes
that can fit into a single block, i.e., b 409648 c = 85 for a system
with 4K logical blocks. In this way, we can perform disk
I/O on all children of a node with a single block access.
This also allows us to perform cryptographic operations on
the blocks with a single pass, because page sizes are often
equal to or multiples of block sizes. Other configurations
are also possible as long as n is chosen so that nodes fall
within block boundaries.

Note that the structure of an FKT can be estimated fairly
accurately at the time of system initialization, and the tree
structure will remain static throughout the system’s life. In
our approach, there is a leaf node corresponding to each
file. The number of files is limited by either the number
of inodes a file system can support on a device of given
capacity or, in the case of file systems that allocate inode
indices dynamically, by the space reserved on the device for
the key store. With this knowledge of how many leaves are
going to be available in the FKT at any given time, we can
further optimize the tree structure for space efficiency.

We do this by first calculating the minimum tree height
required based on the number of inodes we need to support,
and then decreasing the fan-out of the root node to a value
smaller than n in order to cull unused, empty subtrees of the
root. For instance, an Ext4 file system created on a device
with a 100GB capacity would default to allocating 6,553,600
inodes. To create a tree with 6,553,600 leaves working back
towards the root (with n = 64 to simplify calculations),
we would need 6553600

64 = 102400, 102400
64 = 1600, and

1600
64 = 25 nodes at each level. Consequently, a fan-out of

25 for the root would be sufficient for this configuration.
The recurrence relationship for calculating the total number
of tree nodes required to support |F | files is given below,
excluding the root node stored externally. As a result, our
implementation reserves 48R(|F |) bytes of storage space
for a file system that can represent a maximum of |F | files.

R(|F |) =

{
|F |+R(d |F |n e), if |F | > n

|F |, if |F | ≤ n

Recall that our approach requires logn |F | disk accesses
(i.e., the height of the tree) to retrieve or discard the required
keys with each file access and deletion. In order to mitigate
the I/O overhead caused by this necessity, our approach is
twofold. First, we always keep the decrypted nodes in lev-
els 1 and 2 in memory (e.g., following the previous example
with 6,553,600 leaves and n = 64, this would require less
than 7MB of memory). Modified nodes are written to disk
periodically. Next, we employ a caching strategy for the
leaf nodes so that the keys for frequently accessed files are
available in memory. A dedicated kernel thread periodically
synchronizes dirty cache entries to their disk blocks and
evicts old cache entries. Note that we experimented with
various caching strategies and data structures for searching
the cache efficiently. Our measurements show that having
a cache, as opposed to always reading the keys from the
disk, results in a significant performance gain. However,



fine-tuning the cache organization had no discernible impact
on performance. This indicates that ERASER’s performance
is primarily I/O bound as expected, and that cache searches
are overshadowed by I/O operations.

4.6. Master Key Vault

ERASER stores the master key in the NVRAM of a TPM
chip. This enables us to reliably discard (i.e., overwrite) an
obsolete key when the master key needs to be regenerated
after a file deletion, and also provides a strong defense
against unauthorized retrieval of the master key.

While it would be possible to interact with the TPM chip
directly from within the kernel, ERASER instead utilizes a
user space helper application to access the NVRAM. This
is a conscious design choice to make it possible to extend
the system to support different secure storage modules in
the future, without requiring modifications to the kernel
core. ERASER coordinates with this helper using netlink,
a standard Linux mechanism for kernel-to-user space com-
munication.

While stored inside the NVRAM, or in transit between
the user space and kernel, the master key itself needs to
be protected. This is accomplished by encrypting the mas-
ter key with another encryption key derived from a user
password. This process is as follows: 1) When setting up a
new ERASER instance, the user enters a password that is fed
into a key derivation function to produce a cryptographically
strong encryption key. 2) The kernel randomly generates the
first master key. 3) The kernel uses the password-derived
key to encrypt the master key, and then transfers it to the
NVRAM using the user space helper.

As a result, the master key is always encrypted when
residing inside the TPM chip, accessed by the user space
helper, or in transit through netlink. That is, the master
key never leaves the TPM chip in plaintext, and is also
never exposed inside the user space helper. When the kernel
module generates a new key, it is encrypted in the kernel
space, and only then transferred through the user space
helper. At any given time, only the kernel has access to
the master key.

Practicality. We opted to utilize a TPM chip to imple-
ment the master key vault due to its wide availability on
modern computers. Specifically, many major vendors now
provide TPM chips by default on their business-oriented
systems. Further adoption of TPM chips is motivated by
the rapid deployment of security technologies that require
them (e.g., recent versions of Microsoft Windows security
tools, such as BitLocker, require TPM chips to work at
their full capacity [22], [23]). External TPM chips can also
be added to many modern motherboards at a low cost 2.
When modifying the hardware configuration is not possible,
tokens with similar secure storage properties can be used
instead (e.g., YubiKey is a suitable USB option and costs
$40 as of this writing). All in all, ERASER’s secure storage

2. As of this writing, an Amazon store search for external TPM chips
returns options ranging from $10 to $30.

requirement could easily and inexpensively be fulfilled in
many use cases.

Write Wear and Security. Another important consid-
eration pertaining to external secure storage modules is the
write wear caused to the medium by key rotations. In our
case, we can avoid early exhaustion of the NVRAM write
wear capacity by limiting the key rotations to an acceptable
frequency. Specifically, it is not strictly required to refresh
the master key and write it to the TPM chip every time a file
is deleted. This operation can be performed less frequently,
but periodically, as configured by the user.

An important implication of limiting storage wear in
this way is that ERASER’s security guarantees also get
weaker with less frequent key rotations. Recall that ERASER
only guarantees secure deletion once the old master key is
discarded. Delaying this process extends the time frame in
which the files deleted after the most recent key refresh can
be successfully recovered. Therefore, users should choose
an appropriate key refresh frequency according to their
applicable threat model. For instance, as little as one rotation
at every reboot could be sufficient for a home user, while a
system storing sensitive business data could write the new
key to the TPM chip more frequently, every hour.

4.7. Encrypting Non-File System Blocks

ERASER provides security guarantees similar to standard
file encryption tools as a side benefit (recall that the master
key is further protected with a user password). However,
this is still inferior to full disk encryption, because non-file
disk blocks (e.g., the file system’s internal blocks) remain
unencrypted. This would necessitate a user desiring both
full disk encryption and secure deletion to run ERASER on
top of another disk encryption solution, such as dm-crypt,
hurting disk performance.

To address this limitation, we extended ERASER to pro-
vide full disk encryption for non-file blocks as well. In short,
ERASER operates in file encryption mode, as described in
Section 4.3, if the I/O request is for a file block. In all
other cases, it performs regular disk sector encryption using
a fixed key generated on system initialization and protected
with a user password. The IVs in this mode are derived
from disk sector numbers, using the “ESSIV” method [13].
In this way, ERASER becomes a full replacement option
for other disk encryption solutions, offering secure deletion
guarantees on top of the usual confidentiality characteristics
of disk encryption.

4.8. Managing ERASER Partitions

Users interact with ERASER through a user space appli-
cation that allows them to format physical devices to create
the required internal metadata. During this setup process,
users are required to configure a password from which
encryption keys are derived for securing the master key
while it is being transported from the TPM chip to the
kernel, and also to encrypt non-file system blocks.



Later, ERASER partitions can be activated with this
tool to expose the securely-deleting virtual device node by
supplying the correct password. In the same way, users can
view active instances of ERASER, made available by the
driver through a /proc node, and deactivate them when
no longer needed. Through this application, users can also
configure ERASER to use any of the supported vault devices
for master key storage.

5. Evaluation

Many of our design and implementation choices were
geared toward achieving good I/O performance on commod-
ity computers, to build a system with practical impact. Here,
we present two sets of experiments to evaluate the perfor-
mance overhead of ERASER, and compare it to ordinary full
disk encryption. Experiments were performed on a system
with an Intel i7-930 2.2GHz CPU, 9GB of RAM, running
Arch Linux x86-64 with an unmodified 4.17.0 kernel. The
storage device used was a Samsung 950 PRO SSD with 1TB
capacity, formatted with Ext4 using the default file system
settings. Tests were run directly on the hardware, without
virtualization.

Note that the prototype we evaluate in this section also
implements the non-file system block encryption extension
described in Section 4.7, and therefore, functions as a full
disk encryption solution as well.

5.1. I/O Benchmarks

To observe how ERASER impacts the I/O performance of
the underlying storage device, we first put our system under
stress using the popular disk and file system benchmark
Bonnie++ [1]. For file I/O tests, we configured Bonnie++
to write and read 20×1GB files. This size was chosen to
be more than twice the system RAM, following the tool’s
recommendation. Next, file creation and deletion tests were
performed with 512×1024 small files each containing 512
bytes of data, distributed among 10 directories. All tests
were also repeated using dm-crypt, the standard Linux full
disk encryption solution. While our discussion will focus
on comparing ERASER with dm-crypt, we also provide
benchmark results obtained without running either, as a
baseline. The results are shown in Table 1.3 These results
were averaged over five runs, and the maximum relative
standard deviation we observed was below 2% in all cases.

The results reveal that when performing reads and writes
on a small number of large files ERASER exhibits similar
performance to dm-crypt, with the overhead staying below
1%. This is not surprising; once ERASER obtains the encryp-
tion key for the processed file with a one-time performance
hit, the remaining task of encrypting and decrypting the file

3. In all tests we measured higher write speeds than reads. Although
unexpected, Internet sources indicate that this is an issue common to SSDs
by this vendor, potentially due to a firmware quirk. Notwithstanding the
reasons, we point out that this issue does not have any bearing on the
relative performance overhead observed between the three test setups in
our evaluation.

blocks in-flight is nearly identical to how dm-crypt performs
disk block encryption. However, in the file creation tests,
ERASER incurs a more noticeable performance impact. This
is likely due to the fact that ERASER now needs to perform
a larger number of additional I/O operations to repeatedly
access its key store, and decrypt the corresponding FKT
nodes to obtain keys corresponding to each newly created
file.

A significant performance hit is observed during file
deletions, where ERASER falls behind dm-crypt by 20%.
This outcome is in line with our expectations; a file dele-
tion is costly: ERASER intercepts the unlink system call,
performs multiple accesses to the FKT, and replaces all
involved keys with freshly generated ones, also encrypting
and writing them back to the key store if there is cache
contention. Despite this drawback, the actual number of
files processed per second by ERASER remains considerably
high. We next explore how ERASER performs with small
file operations in more detail and show that the relatively
high deletion overhead does not significantly impact real-life
workloads.

5.2. Tests with Many Small Files

Prompted by ERASER’s relatively high performance
overhead when dealing with many small files under bench-
mark conditions, we next investigated how it would perform
in more realistic scenarios. We chose six tasks performed on
a large directory tree – the Linux kernel source code – and
measured the time elapsed to complete each task. During
these tests, our entire Linux setup (i.e., not only the kernel
source tree) was installed on an ERASER partition to reflect
a realistic use case.

Tests were performed first with ERASER, and then dm-
crypt. Measurements on a vanilla system with no disk
encryption are also provided as a baseline. Our tests included
the following tasks: (i) Unpacking the XZ-compressed
source code archive, (ii) making a copy of the directory
tree, (iii) deleting the directory tree, (iv) grepping the entire
directory for a static term, (v) computing an MD5 hash over
all the files, and finally (vi) compiling the kernel. All tasks
were chosen to include a large number of file operations,
including reads, writes, deletions, and new file creations.
Certain tasks such as kernel compilation combined small
file I/O with a CPU-bound component to cover different
scenarios. The results are shown in Table 2. These results
were averaged over five runs, and the maximum relative
standard deviation observed was below 5% in all cases.
Operating system caches were dropped between tests to
ensure that measurements were not affected by prior runs.

These results confirm our findings from the Bonnie++
benchmarks that ERASER has a noticeable file deletion
overhead, this time manifesting itself at 21% during the
directory removal task. However, we point out that, in terms
of the time elapsed, real-life impact of this performance
loss is measured in less than a second. In all other tasks,
ERASER performed comparably to dm-crypt, and surpassed
it in certain cases. However, this should not be taken to mean



Table 1. DISK I/O AND FILE SYSTEM PERFORMANCE OF ERASER COMPARED TO FULL DISK ENCRYPTION WITH DM-CRYPT. BENCHMARK RESULTS
ON AN UNENCRYPTED DEVICE ARE ALSO PRESENTED AS A BASELINE.

No Encryption dm-crypt ERASER

Overhead vs. Overhead vs.
Bonnie++ Tests Performance Performance No Enc. Performance No Enc. dm-crypt

Write 255300.00 KB/s 254990.00 KB/s 0.12 % 253530.20 KB/s 0.70 % 0.58 %
Read 213778.00 KB/s 142174.20 KB/s 50.36 % 141747.60 KB/s 50.82 % 0.30 %

Create 37183.60 files/s 35850.80 files/s 3.72 % 34266.00 files/s 8.52 % 4.63 %
Delete 59418.80 files/s 59098.00 files/s 0.54 % 49230.80 files/s 20.69 % 20.04 %

Table 2. TIMED EXPERIMENTS WITH THE LINUX KERNEL SOURCE CODE DIRECTORY TO COMPARE THE SMALL-FILE PERFORMANCE OF ERASER TO
FULL DISK ENCRYPTION WITH DM-CRYPT. TESTS RESULTS ON AN UNENCRYPTED DEVICE ARE ALSO PRESENTED AS A BASELINE.

No Encryption dm-crypt ERASER

Overhead vs. Overhead vs.
Kernel Source Tests Time (s) Time (s) No Enc. Time (s) No Enc. dm-crypt

Unpack 10.60 10.84 2.26 % 11.39 7.45 % 5.07 %
Copy 11.44 23.59 106.21 % 22.61 97.64 % −4.15 %
Remove 3.26 4.17 27.91 % 5.04 54.60 % 20.86 %
Grep 11.11 25.18 126.64 % 24.12 117.10 % −4.21 %
MD5 Hash 10.39 24.20 132.92 % 22.20 113.67 % −8.27 %
Compile 1564.13 1564.15 < 0.01 % 1568.13 0.26 % 0.26 %

that ERASER is faster than dm-crypt. Instead, we conclude
that they perform similarly in real-life tasks. The differences
in our measurements are likely due to variations in how the
underlying system performs.

Tests with Applications. Our focus in this section
was on maximizing and isolating small file accesses using
programmer-oriented workloads. We also tested ERASER
with more user-oriented tasks that are not primarily I/O
bound, but that still heavily use the file system. Specifi-
cally, we experimented with two web browsers (Chromium,
Firefox), and an office suite (LibreOffice), which create and
delete large numbers of temporary files when running.

ERASER always incurred an overhead less than 5% com-
pared to dm-crypt in these experiments, as expected. How-
ever, many test cases with normal use of these applications
(e.g., automated web browsing with Chromium & Selenium)
did not yield any reliably-measurable overhead. Therefore,
we opt to present the benchmarks shown in Table 2 that
specifically stress the bottleneck operations of ERASER as
our primary evaluation effort for this work. Results of these
benchmarks are useful and meaningful, as they depict worse-
case performance characteristics of the system. The tests
are also reliable and reproducible. This demonstrates that
ERASER is practical for everyday tasks.

5.3. Discussion of Results

Our evaluation confirms that ERASER’s performance is
directly correlated with the number of files it accesses.
I/O performed in big chunks, and on a small number of
files, incurs no significant overhead. In contrast, accessing
a new file, or deleting an existing one, triggers additional

I/O operations to retrieve the corresponding keys from the
FKT, or to rebuild branches of the FKT with fresh keys.
Therefore, accessing large numbers of small files results in
a noticeable loss of throughput compared to ordinary full
disk encryption. However, in comparison to ordinary full
disk encryption, ERASER guarantees secure data deletion
and is useful in scenarios where privacy guarantees are of
utmost importance.

Our evaluation also shows that this reduction in through-
put does not always translate negatively to realistic work-
loads such as working with large directory trees; the per-
formance loss is often measured in merely seconds. In
fact, in many workloads, also including those that have
processor-heavy components, ERASER matches dm-crypt in
performance. We find these results encouraging, especially
considering that dm-crypt is a standard, well-optimized
component of the Linux kernel. We conclude that in most
practical use cases, ERASER offers performance comparable
to regular full disk encryption with the added benefit of
secure deletion.

5.4. Overhead vs. Unencrypted Disk I/O

In our evaluation, we primarily focused on comparing
ERASER’s performance to regular full disk encryption with
dm-crypt. The motivation for this decision was twofold.
First, ERASER’s observed performance loss is a direct result
of disk encryption, and the overhead of secure deletion-
specific operations are low in comparison. Second, ERASER
provides security guarantees equivalent to modern full disk
encryption technologies, making it a viable substitute in
their place.



The negative impact of full disk encryption on I/O
performance is a well-understood and accepted trade-off in
the face of modern security threats. Therefore, we believe
that presenting dm-crypt as a baseline for our evaluation is
appropriate in many threat scenarios and computing envi-
ronments.

Still, it is important to point out that, as shown in
Tables 1 and 2, a vanilla system offers significantly higher
I/O performance than both ERASER and dm-crypt. For
instance, compared to an unencrypted disk, ERASER incurs
an overhead of 50.82% for big I/O, and 117.10% for small
file operations in the worst-case experiments. In a setting
where users do not need the benefits of full disk encryption,
and are not readily using a technology such as dm-crypt,
this considerable performance hit could be an impediment
to adopting ERASER.

5.5. Impact of File System on Performance

Our implementation’s performance is not tied to the file
system being used in combination with ERASER. This is
a direct result of our implementation working at the block
device layer. We verified this property by further testing
ERASER on various other file systems supported on Linux,
such as ReiserFS and VFAT. In each case, we obtained
similar results to those we presented in this section.

Similarly, file system utilization has no effect on
ERASER’s performance. Most Linux file systems (e.g., Ext4)
support a fixed number of inodes, configured when for-
matting the storage medium. As explained in Section 4.4,
ERASER uses this information to initialize a static FKT, and
changes to the tree structure will never be necessary.

With exceptional file systems that can dynamically ad-
just inode counts, we would need to reconstruct the FKT
when the number of files exceed the keys initially supported;
this would be a rare event with a one-time performance
hit. However, we note that our prototype implementation of
ERASER currently only supports a static FKT, and therefore,
only file systems that use a fixed number of inodes.

6. Discussion & Future Work

Prior Tree-based Secure Deletion Work. As mentioned
in Section 2, Reardon et al. [27] implemented a B-tree-
based approach to secure file deletion that also made use
of cryptographic erasure and key wrapping. This work is
highly related; however, a significant difference between
their prototype and ERASER lies in our focus on developing
a high performance secure deletion technique, and subse-
quently, presenting a practical and usable system that can
act as a viable substitute for existing, well-established full
disk encryption tools.

First, while Reardon’s B-tree prototype shows promising
performance characteristics when combined with a suitable
caching policy, our evaluation of ERASER shows that an
FKT implementation can closely approach the performance
characteristics of a heavily used and optimized production-
level full disk encryption implementation (i.e., dm-crypt).

We stress that we are not the first to propose tree-based
cryptographic erasure using key wrapping. However, we
believe that FKTs and our prototype implementation are the
first to show that it can be performant for everyday use.

Next, Reardon’s work leverages the Linux kernel’s net-
work block device facility [5], which routes block I/O
requests over a TCP connection, and is typically used for
accessing remote storage devices. The authors utilize this
technique to present a proof-of-concept implementation of
their approach for their experiments. In contrast, one of our
primary goals when developing ERASER was to provide a
robust, practical, and usable system that could easily be
adopted for everyday use, on a typical Linux system. As
a result, much of the novelty of our work lies in addressing
this different set of design and implementation challenges.

Implementation Limitations. ERASER makes it possi-
ble to maintain a file-level secure deletion granularity while
operating at the block device layer. However, this design
poses a difficulty to deleting file metadata, as matching file
system-specific metadata to inodes is a non-trivial (but not
impossible) task. Our prototype does not perform secure
deletion of metadata, and we leave tackling this implemen-
tation challenge to future work.

ERASER uses inodes to uniquely match encryption keys
to files. This is an intuitive solution when dealing with Linux
file systems, such as Ext4, which internally represent files
using inodes. However, it should be noted that “foreign” file
systems that are ported to work under Linux (e.g., FAT, ZFS)
do not necessarily have the concept of an inode. Instead,
they construct inodes in memory as files are accessed, and
map their own internal representation of files onto these
in-memory structures as this is required to interface with
the VFS. This peculiar technical detail does not currently
pose any difficulty to us. However, in theory, it could be
possible to implement a file system that does not have a fixed
inode number-to-file mapping, but rather assigns arbitrary
inode numbers to files every time the file system is mounted.
ERASER would not be compatible with such a file system,
and addressing this limitation would require us to employ a
different method to identify files on that file system.

Finally, we point out that secure deletion through cryp-
tographic erasure is only as secure as the underlying cryp-
tographic scheme. This is an inherent limitation of any
security architecture that uses cryptography.

Swap & Hibernation Considerations. The secure dele-
tion guarantees provided by our approach require that file
keys are never written to physical storage without first
being encrypted by a parent key. Likewise, the master key
must never be persisted outside its designated secure vault.
These conditions are easily be satisfied by keeping the
keys in volatile memory protected by the kernel while in
use. However, implementations should take the necessary
precautions to prevent inadvertent leakage of keys in case
the system goes into hibernation, or when memory pages are
swapped out. Specifically, sensitive memory areas contain-
ing key caches should be marked non-swappable, and before
entering hibernation, all key caches must be written back to
persistent storage and their corresponding memory regions



sanitized. The device-mapper framework already provides
a mechanism to intercept hibernation events, allowing easy
implementation of this solution.

Unavailability of Master Key Vault. ERASER’s fre-
quently refreshes the master key stored in the external
vault as part of its normal operation. However, should the
vault become inaccessible for any reason (e.g., a removable
storage device acting as the vault, such as a smartcard,
could be unplugged), ERASER needs to take the appropriate
actions to prevent inadvertent loss of data. One way to deal
with such situations is to delay the master key rotation until
the vault becomes available once again.

If ERASER is to be taken offline under these conditions,
the direct children of an FKT could be encrypted with
the old master key and persisted to disk, which would
temporarily forego secure deletion. Later, when the vault
becomes accessible, the master key would be rotated and
all its direct children in the FKT immediately re-encrypted
to securely erase all previously deleted files. Note that even
in this scenario, an offline ERASER partition cannot be
accessed again until the vault becomes available, because
the master key is required to unlock the FKT on disk before
the file system can be mounted.

Alternatively, in scenarios that involve highly-sensitive
files, it could be preferable to rotate the master key as soon
as files are deleted regardless of the vault’s availability, and
opt for having the file system become inaccessible should
the system be taken offline before the new key could be
written to the vault. Such a policy would instead sacrifice
data integrity in favor of guaranteed secure deletion.

Data Integrity. We implemented ERASER in a stackable
block device driver responsible for encrypting I/O blocks in
flight and manipulating the FKT. As a result, ERASER does
not have a direct impact on file system integrity, or hardware
wear. File system integrity guarantees are provided by the
concrete file system implementations at the layers above,
and hardware-specific reliability concerns are handled by the
underlying block device driver and any embedded storage
controllers.

However, the integrity of the FKT, or more specifically,
nodes containing file encryption keys directly affects the
integrity of file data they encrypt; if a FKT node is not
properly persisted to disk, the corresponding file will be
lost. While similar risks are necessarily present in any
disk encryption technique, the use of key caches requires
special attention in ERASER’s case, as an overly aggressive
caching policy may delay FKT updates, and increase the
risk of data loss. While various techniques employed by
persistent storage technologies may be applied to secure
FKT transactions and reduce this risk, potential solutions
would need a careful security analysis, as replicating parts of
FKT may invalidate ERASER’s secure deletion guarantees.

Users’ Perception of Secure Deletion. ERASER is
designed to securely delete files only when a system call
explicitly requests removal of the file inode in question.
For instance, our prototype implementation considers the
unlink and truncate family of system calls as the trig-

ger for secure deletion. Of course, this could trivially be
extended to cover other system calls.

However, file system implementations may not always
explicitly destroy inodes even when, from a user’s per-
spective, it may appear that file contents are deleted. For
example, consider a scenario under Linux and Ext4 where a
directory contains two files X and Y. When a user executes
the command “mv X Y” to overwrite Y, the file system
does not actually unlink Y. Instead, its inode is reused,
and only the data blocks of Y are overwritten. In other
words, ERASER would not consider this a file deletion event,
and would not securely delete the contents of Y until the
user later executes another command such as “rm X”, at
which point all current and old data pointed by that inode
is securely deleted.

One potential technical mitigation to this problem would
be to deploy ERASER together with a simple user space
toolkit that automatically corrects such unexpected behavior.
For example, to address the case described above, a wrapper
around “mv” can be introduced to explicitly call “rm” on
overwritten files. However, in general, users of ERASER
need to be aware of this semantic gap and limitation of
the system, and explicitly execute deletion operations when
secure deletion is desired. This demonstrates that technical
solutions often do not completely obviate the need for
effective security awareness, training, and practice.

Application-Level Secure Deletion. This paper focused
on achieving secure deletion at the file system level, as
opposed to finer-grained secure deletion of specific pieces
of sensitive application data. Our approach balances this
loss of granularity with strong security guarantees and good
usability in everyday scenarios with a wide array of applica-
tions and operating systems. However, we note that file-level
secure deletion is not necessarily the optimal granularity
in all cases. For instance, Android applications may store
and manipulate all of their data in a single, file-backed
database; in such cases, encryption and secure deletion
at database entry-granularity may be the more appropriate
approach [28]. We leave exploration of this venue to future
work.

7. Conclusions

Even though the problem of irrevocably deleting data
from non-volatile storage has been explored by many re-
searchers, flash-based storage media with opaque on-board
controllers still make it a challenging task to provide strong
secure deletion guarantees on modern computers. At the
same time, previously practical secure deletion tools and
techniques are rapidly becoming obsolete, and are rendered
ineffective.

We leverage cryptographic erasure to design a novel,
effective secure deletion technique called ERASER. Our
work is distinct from the myriad of existing literature in this
field in that, ERASER can guarantee secure deletion of files
on storage media regardless of the underlying hardware’s
characteristics, treating storage devices as blackboxes. We
achieve this by bootstrapping cryptographic erasure with the



help of an external, secure storage vault, which could be
implemented using cheap, commodity hardware.

We present a practical implementation of ERASER, real-
ized as a stand-alone Linux block device driver that could be
deployed and used on a standard computer with a TPM chip.
We demonstrate that our implementation exhibits similar
performance characteristics to dm-crypt, the standard disk
encryption module on Linux, and thus offers users an alter-
native full disk encryption solution with the added benefit
of secure file deletion.
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