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Abstract—When working with real world programs, dy-
namic analyses often must be run on a whole-system instead of
just a single binary. Existing whole-system dynamic analysis
platforms generally require analyses to be written in compiled
languages, a suboptimal choice for many iterative analysis
tasks. Furthermore, these platforms leave analysts with a split
view between the behavior of the system under analysis and
the analysis itself—in particular the system being analyzed
must commonly be controlled manually while analysis scripts
are run. To improve this process, we designed and imple-
mented PyPANDA, a Python interface to the PANDA dynamic
analysis platform. PyPANDA unifies the gap between guest
virtual machines behavior and analysis tasks; enables painless
integrations with other program analysis tools; and greatly
lowers the barrier of entry to whole-system dynamic analysis.
The capabilities of PyPANDA are demonstrated by using it
to dynamically evaluate the accuracy of three binary analysis
frameworks, track heap allocations across multiple processes,
and synchronize state between PANDA and a binary analysis
platform. Significant challenges were overcome to integrate
a scripting language into PANDA with minimal performance
impact.

I. Introduction
Although program analyses commonly focus on indi-

vidual programs, real-world computing environments are
generally complex, multi-process systems running with
various privilege levels (i.e., kernel and userspace) where
data flow between processes through porous interfaces.
Program analysis frameworks capable of supporting such
environments are able to conduct whole-system instru-
mentation [5], slicing [11], and multi-process taint track-
ing [15], all of which can be used in reverse engineering,
vulnerability discovery, and root cause analysis. These
whole-system analyses are largely conducted dynamically
(through emulation), as statically reasoning about whole-
system interactions requires understanding OS internals
(e.g., scheduling, IPC) as well as reasoning about an
exponentially growing set of feasible states.

While single-application static and dynamic analysis
frameworks such as angr [47], Manticore [25], Triton [39],

IDA Pro1, and Ghidra2 all support conducting analyses
from scripting languages, such functionality is rarely
present in whole-system dynamic analysis platforms lead-
ing to cumbersome workflows. For example, consider the
task of conducting a whole-system dynamic taint analysis
on data sent to a custom kernel module that ultimately
flow into a user space application. An analyst must
approach this task through two distinct, but complemen-
tary, processes. First, they must drive the guest system’s
behavior: boot the system, log in, obtain the relevant
source code and toolchains, compile the code (or copy in a
prebuilt binary), and load the kernel module. Then, once
the system under test is properly configured, the actual
analysis can begin by further driving the guest system’s
behavior to send data into the kernel module and, at the
same time, asking the analysis platform to apply taint
labels to the data in the guest’s memory. After some
indeterminate amount of time, the analyst would then
need to query the analysis platform to identify where and
how tainted data reached the userspace application.

This workflow highlights a number of significant chal-
lenges largely related to user experience, as well as an
active research problem. The research challenge lies in
bridging the semantic gap [18] to extract meaning from
the emulator’s view of guest memory (e.g., how the
results from the taint analysis can be tied back to process
names and non-randomized program counters). The user
experience challenges are easier to tackle, but no less
important from an end-user’s perspective. These include
copying files into the guest, driving guest behavior, and
synchronizing guest behavior with analysis tasks.

To address these challenges, we designed and im-
plemented PyPANDA: a Python 3 interface to the
PANDA [10] whole system analysis platform. PyPANDA
allows for driving a guest execution, running Python code
at any PANDA callback (capable of reading or writing
guest state), and interacting with PANDA plugins. Since
Python has a large ecosystem of libraries, PyPANDA also
enables novel combinations of existing libraries with a
whole system dynamic analysis framework.

The remainder of this paper is structured as follows. §II

1https://hex-rays.com/products/ida
2https://ghidra-sre.org
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covers necessary background information on the PANDA
framework. The overall design goals for the project are
presented in §III, and the implementation details are dis-
cussed in §IV. In §V, we detail PyPANDA’s key features.
§VI examines three program analysis tasks conducted with
PyPANDA: comparing binary analysis frameworks on-the-
fly, dynamically monitoring user and kernel-space heap
allocations, and an entropy analysis of packed binaries
linked with a web interface which transfers program state
to Ghidra. We discuss our implementation of PyPANDA
in §VII. Finally, we examine related work and conclude
in §VIII and §IX.

II. PANDA
As PyPANDA builds atop PANDA, we provide back-

ground information on the PANDA dynamic analysis plat-
form in this section. PANDA forks the QEMU emulator [1]
to add callbacks before significant events in the emulation
workflow, a record and replay system to enable offline
analyses of guest behavior, and APIs for reading and
writing guest state [10]. Together, these features enable
dynamic analyses of “guest” systems (virtual machines)
running under PANDA. PANDA’s plugin system allows
analysts to create tailored dynamic analyses by combining
reusable, core plugins (e.g., a taint system) with custom,
analysis-specific logic. PANDA has been used for reverse
engineering, malware analysis, crash analysis, and trace
collection [40, 42, 43, 27].

PANDA provides 48 callbacks at which plugins can
register custom code to run. Each callback represents a
low-level, architecture-agnostic operation such as before a
basic block of code is executed, after a virtual memory
address is read, or before the address space identifier
(ASID) changes.

PANDA’s record and replay system enables analysts to
efficiently record guest behavior with little overhead and
later replay its behavior under analysis. This allow for
running slow analyses without the risk of analysis overhead
affecting guest behavior.

PANDA has a small API for plugins to query and alter
guest state but these interactions largely occur by plugins
directly modifying emulator internal state.

PANDA provides a set of reusable plugins to enable
common dynamic analysis tasks. Three notable plugins are
PANDA’s dynamic taint system taint2, a syscall tracking
system syscalls2, and OS-introspection for both Linux
and Windows OSI3. Plugins interact with one another
through PANDA’s plugin-to-plugin interface (PPP) which
allows for plugins to provide custom callbacks which other
plugins can request to be notified of. Plugins can also
expose custom APIs which can be consumed by other
plugins. The PPP interface allows for composition of

3PANDA’s OS-introspection requires using OSI profiles for the
guest which describe sizes and offsets of key kernel data structures.
These profiles can be generated from inside the guest or by analyzing
a kernel’s DWARF information when such information is available.

plugin logic. For example, the file_taint plugin which
applies taint labels to data read from a specified file, builds
off syscalls2 and OSI to identify when data is read from
the specified file and then uses taint2 to apply taint labels
to those bytes.

The workflow for a custom PANDA analysis typically
begins by capturing a recording of an analyst interactively
driving a guest system to exhibit some behavior of interest.
With this recording in hand, the analyst begins the process
of creating a new PANDA plugin in C or C++. That
plugin can use the PPP interface to interact with other
plugins and query the guest memory or registers at any
point in time.

In our experience developing dozens of such plugins, we
have found this task to be an iterative process. In their
presentation of PANDA, Dolan-Gavitt et al. describe this
clearly:

“Plugins are typically written quickly and itera-
tively, running the replay over and over to con-
struct more and better and deeper understanding
of the important aspects of system execution,
given the RE task.” [10]

Although this task is quick and iterative, more akin to
prototyping than production development, PANDA only
supports plugin development in C and C++.

III. Design Goals
We begin our discussion of PyPANDA by identifying

five design goals for the project.
1) High Performance Scripting: It is well known that

Python programs typically execute slower than equivalent
programs written in compiled languages such as C and
C++ [13]. However, scripting languages such as Python
are often better for rapid prototyping and gluing com-
ponents together [29]. With this in mind, we determined
that adding a new scripting interface to PANDA could
greatly improve the project if the performance impact was
acceptable.

2) Unified Analysis: The traditional PANDA workflow
involves writing a plugin and either creating a recording
manually or by using a script to control the serial console
and PANDA monitor. This leads to scenarios in which
key code is disparate: the process necessary to reproduce
results may be scattered across different scripts or require
manual effort.

We wish to replace this fragmented view of analysis and
implementation and unify interaction outside the machine
and analysis at the callback level. Beyond enabling a stan-
dardized reproducible method to generating recordings,
this also allows for the entirety of the analysis to be done
in a single script.

3) Facilitation of Integration: Integrations with pub-
licly available libraries and frameworks enable developers
to rapidly develop analyses without rebuilding common
components. By expanding PANDA’s interfaces to work
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with a new language, we will allow PANDA developers to
easily integrate with many additional libraries.

4) Ease of Use: Whole-system dynamic analysis can be
difficult to learn due to the complexity of the systems
being analyzed and unpolished user interfaces. We wish
to lower the barrier of entry to this class of analyses
by simplifying the PANDA interface without limiting
experienced users.

5) Access to Core Emulator Data Structures: The API
provided by PANDA enables analysts to complete common
tasks such as reading or writing memory, but developing
new dynamic analyses often requires interacting with a
guest system in novel ways. To avoid limiting users to
just features directly exposed by the PANDA API, users
of our tool should be able to access and modify internal
emulator data structures representing the guest system’s
state.

IV. System Design

To implement PyPANDA, we modified PANDA to build
as a shared object and automatically generate headers
parsable by CFFI. We then created a Python module to
provide clean interfaces to PANDA’s APIs, new features,
unit tests, and examples. PyPANDA was implemented in
7,791 lines of Python code (after excluding autogenerated
files) as measured by SLOCCount [48].

A. PANDA as a Library
PANDA is traditionally built as a series of binaries,

one per supported architectures (panda-system-x86_64,
panda-system-arm, etc.) and plugins are built for each
architecture as shared objects. PANDA currently supports
x86, AMD64, ARM, AArch64, PowerPC, and MIPS, but
can be extended to support additional architectures. To
enable PyPANDA we elected to build PANDA itself as
a shared object. This allows us to intentionally invert
the control the traditional PANDA model. In doing so
we can provide unify the disparate components of whole-
system dynamic analysis into a single script. Additionally,
analyses will have full access to the emulator’s internal
data structures by means of shared library exported
variables.

We chose not to simply embed a Python interpreter
within the emulator, as done by PyREBox [7]. Although
that approach would have simplified the development
process, it cannot support our desired inversion of control
model.

Constructing the libpanda objects required significant
modifications to PANDA’s Makefile and its codebase.
In particular, PANDA’s main function had to be split
onto multiple stages such that control could transfer
between PANDA and PyPANDA during initialization.
Additionally, we expanded the PANDA API, a foreign-
language agnostic interface for controlling PANDA and
utilizing its functionality, in order to allow for library

Fig. 1. PyPANDA’s architecture.

consumers to interact with the core of PANDA as well as
its shared object plugins.

PyPANDA’s overall architecture is shown in Figure 1.
The libpanda objects and PANDA API are designed to
allow clients to control PANDA (e.g., begin running a
guest) as well as registering callbacks, interacting with
C/C++ plugins, and altering guest state by exposing
PANDA’s APIs and internal objects. Together, these APIs
and object allow for efficient control of and communication
with PANDA from any language with a C foreign function
interface4.

B. Header Files

CFFI5 enables interaction between C shared libraries
and Python; it uses pycparser6 to parse C header files
that define structures along with function declarations
and represents objects as if they were members of a
traditional Python class. Unfortunately, pycparser, a pure
Python parser for C, can only operate on preprocessed C
headers—it cannot support preprocessor declarations such
as ifdef and define. This presents a difficult problem when
working with a project as large as PANDA. Pycparser doc-
umentation recommendations using the C Preprocessor to
generate a single header file to avoid this problem. This is
quite difficult in practice because pycparser is unable to
parse C source which contains data format specifiers, such
as attributes. An extra layer of complexity is added for the
PANDA project because the output of the build process is
not a single executable, but multiple executables targeted
at various guest architectures. Structures are commonly
defined using preprocessor macros to include different
fields for different architectures. Attempting to generate
preprocessed headers for PANDA with the C preprocessor
produced over 50,000 lines of code and still caused parsing

4Although this work focuses on PyPANDA, we note that others
have begun development of PANDA-rs, a Rust-interface to PANDA
building off the architecture changes we introduced.

5https://cffi.readthedocs.io
6https://github.com/eliben/pycparser
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Algorithm 1: Simplified Header Generation Process
Input: List of structure names, requiredStructureList to

recursively pull definitions for
Output: Headers for all reachable types
for structure in requiredStructureList do

potentialHeader ← pahole(structure)

while True do
errors← cffiBuild(potentialHeader) ;
if errors = ∅ then

break ;
else

missingStruct← parseError(errors);
if missingStruct is nested struct then

potentialHeader ← pahole(missing) ;
else

potentialHeader cast missingStruct as void∗;

return potentialHeader;

errors for pycparser. Even if the errors could be rectified,
this approach is inefficient.

Instead of parsing the source code of PANDA, we
use debug information from our compiled shared objects.
We use Poke-a-Hole (or pahole) [38], a utility to parse
DWARF debug information, to gather information about
each structure. Poke-a-Hole was selected because it allows
interpretation of classes as structures, suppression of
aligned attributes, and suppression of force paddings.

We present a simple solution to this problem in Algo-
rithm 1. For each architecture we support we begin by
identifying a list of necessary structures manually. Using
Poke-a-Hole, the definitions of these structures are added
to a header file. This file and the corresponding shared
object is provided into CFFI which may generate errors.
These errors will identify the structures referenced, but
not defined. When we identify a reference, but not defined
structure we add it when necessary. Nested structures
must be incorporated into the header file to capture the
structure size and relative offsets of its members. On
the contrary, referenced structures are merely pointers
with an assigned type. We do not need to understand
their structure layout to understand the previous type
because a pointer is a constant size on a given architecture.
To remove unnecessary structure reference we simply
represent pointers to structures which are unnecessary
as void pointers. Since these structures were not in the
initial list of required structures, skipping their definition
is acceptable. Our process continues adding structures
until CFFI parses the header file without any errors.
This solution produces a header file containing a minimal
number of structures required (about 60) to operate
PyPANDA, which in turn allows it to function with
minimal overhead while maintaining in-depth knowledge
of all necessary structures. Once generated, CFFI can
consume this core header file along with other PANDA
headers when running the relevant architecture.

Fig. 2. PyPANDA Lifecycle

V. Key Features
PyPANDA was created to enable rapid development

of whole-system dynamic analysis through a simple, yet
powerful Python interface. In this section, we walk through
the sample code presented in Listing 1, its position in the
lifecycle flow with Figure 2, and discuss the key features
of PyPANDA.

1 from pandare import Panda
2 panda = Panda(generic='i386') # or x86_64, arm, etc.
3
4 @panda.queue_blocking
5 def drive_guest():
6 panda.revert_sync('root')
7 panda.copy_to_guest('host_directory')
8 print(panda.run_serial_cmd('host_directory/a_binary'))
9 panda.end_analysis()

10
11 @panda.cb_before_block_exec
12 def demo_before_block_exec(cpu, translation_block):
13 # Called before PANDA executes a basic block of code
14 print(f'About to run block at 0x{translation_block.pc:x}')
15 if translation_block.pc == 0x1234:
16 panda.disable_callback('demo_before_block_exec')
17
18 @panda.ppp('callstack_instr', 'on_call')
19 def calling(cpu, dest_addr):
20 #Called by callstack_isntr plugin on function call
21 print(f'Call to 0x{dest_addr:x}')
22
23 @panda.ppp('callstack_instr', 'on_ret')
24 def returning(cpu, dest_addr):
25 # Called by callstack_isntr plugin on function return
26 print(f'Return to 0x{dest_addr:x}')
27
28 panda.load_plugin('asidstory', {'width': 80})
29 panda.run() # Run emulation until call to end_analysis

Listing 1: Example PyPANDA script.

A. PANDA Constructor
As shown in Listing 1 on Lines 1 − 2, a script in-

teracts with PANDA by importing the pandare package
and constructing a Panda object. The constructor may
specify an architecture, the guest memory size, a QCOW
file (the QEMU virtual machine disk format which is
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used by PANDA), and other configurable properties. For
convenience, a user may alternatively request a generic
image from a list of nine images covering each architecture
PyPANDA supports. For each generic image, we provide
a QCOW file of a Linux system complete with a snapshot
taken post-login and an OSI profile. The provided QCOW
will be downloaded to disk prior to use.
B. Guest Interaction

Once a PANDA object has been created, the guest can
be controlled through numerous functions as shown on
Lines 4 − 9. Instead of waiting for the guest system to
boot and then authenticating, an analysis can begin by
reverting to a provided snapshot taken after log in. From
there, a script can interact with the guest by sending
commands over the serial console.

PyPANDA is running both the emulator as well as
interacting with the guest. Guest interactions are labeled
with @panda.queue_blocking which queues the function to
run in a separate thread after the emulation begins. This
multithreaded design avoids the risk of deadlocking when
the analysis waits for the guest to complete a command.
It can be seen visually in Figure 2 through its registration
process with @queue_guest and its Guest Interaction loop.
Only a function with such a decorator is allowed to call
synchronous functions that depend on guest behavior such
as revert_sync or run_serial_cmd.

PyPANDA supports copying files into a guest by cre-
ating an ISO file, connecting it to the guest system’s
emulated CD drive, mounting the drive and copying the
files to a writable directory. For example, if the host
machine has a directory called host_directory containing
a binary named binary, the example code would copy
that directory into the guest, run the binary, and end the
analysis.
C. Starting and Stopping

Once the PANDA object is created and a function is
queued up to drive the guest’s behavior, a script must
start the emulation with a call to panda.run() (Line 29).
Once this function is called, the main Python thread will
block until the guest powers off or the analysis is ended
by another thread such as the call to end_analysis on Line
9 which correspond to Figure 2 edges 10, 14, and 15.
D. PANDA Callbacks

A PyPANDA script can register Python functions to
run at any of PANDA’s 48 callback functions through
a decorator. Lines 10 − 16 show a function running on
the before_block_exec callback. This will be called before
each basic block of code is executed inside the guest. This
callback function is run with two arguments, a CPUState
structure which contains details of the virtual CPU and
memory as well as a TranslationBlock which describes the
block of code to be executed.

The decorator registering a function as a callback can
take arguments to give the callback a specific name or to

disable it. Figure 2 shows a call to @callback which registers
callback logic below it after edge 2. By default the callback
is enabled and named the same as the decorated function.
A user can enable or disable callbacks by name.

E. PANDA Plugins
PyPANDA may load or unload compiled PANDA plugin

and provide arguments as shown on Line 28. PyPANDA
may also register callbacks through the PANDA’s PPP
interface (Lines 18 − 26) which will be triggered by a
plugin. Plugins referenced by PPP decorators will be
automatically loaded if necessary.

F. Record and Replay
Not shown in Listing 1 is PyPANDA’s support for

PANDA record and replay. PyPANDA provides a helper
function to revert the guest to a snapshot, copy a directory
from the host machine into the guest, and record the
execution of a command.

@panda.queue_blocking
def take_recording(cpu, tb)

panda.record_cmd('./host_directory/mybin',
copy_dir='host_directory',
recording_name='my_recording')

A PyPANDA script can register callbacks to
introspect guest behavior and then—instead of
running a live system—replay a recording using
panda.run_replay('replay_name').

VI. Evaluation
In this section we present three case studies using Py-

PANDA and a comparison of its performance to PANDA.
Code and a Docker container to reproduce these examples
are available at https://github.com/panda-re/bar2021.

A. Dynamic Oracle IR Testing
1) Motivation: Modern binary analysis tools and tech-

niques are often predicated on the ability to lift raw bytes
encoding native processor instructions to a higher-level
symbolic form, e.g. an Intermediate Representation (IR).
IRs strive to faithfully represent the operational semantics
of the underlying code while simultaneously abstracting
away architecture-specific details.

Due to the sheer range of static and dynamic analysis
tasks a binary analysis IR might support, from static
decompiliation to dynamic taint analysis, there is no
widely-accepted default criteria for evaluating the efficacy,
correctness, or overall design of a given IR. Martignoni
et al. [24] utilize differential fuzzing, comparing CPU
state between IR-based emulators and physical processors.
This technique has drawback of relying on random test
case generation, the empirical likelihood of observing
meaningful divergence is low. Kim et al. [21] introduce
N-version IR Testing, essentially diffing the output of
independently developed IRs for a given set of single-
instruction inputs. This approach is hampered by a lack
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of semantic context, it only considers differences between
single-instruction IR outputs.

In this PyPANDA case study, we briefly prototype a
novel approach for comparing IRs that has practical appli-
cations for real-world reverse engineering: Dynamic Oracle
IR Testing. QEMU, and, transitively, PANDA use TCG
IR to emulate a range of native ISAs. Although this means
that neither can be treated as absolute ground truth,
both emulators are capable of booting entire operating
systems kernels and running complex desktop and sever
applications. Thier fidelity is sufficient for real-world tasks
like performing malware analysis [22] and collecting code
coverage metrics [8].

We assert that this fact makes PANDA a suitable oracle
from which to derive practical conclusions about program
execution, even if, like prior work in IR evaluation, the
derived results do not carry formal guarantees. Our anal-
ysis evaluates disparate IRs against dynamic execution
events observed for real-world programs under PANDA.
Unlike differential fuzzing, we use realistic and non-
random inputs. Unlike N-version IR testing, we evaluate
against the outcomes of concrete dynamic emulation—not
between the static IR lift results.

2) Experiment Design: In our demonstration of Dy-
namic Oracle IR Testing, we seek to compare the efficacy
of leading binary analysis IRs for a real-world reverse
engineering task: identifying function call and return
semantics in an architecture-neutral fashion. Collecting
dynamic call-stack traces is useful for general program
understanding—it is a semantically meaningful metric of
coverage and shines light on higher-level logic.

Whereas traditional userspace instrumentation utilities
can trace system or library calls (e.g. strace and ltrace
respectively), they do not have the ability to hook
arbitrary internal functions. OS-assisted solutions, like
patching bytes to trigger interrupts caught by a debugger,
are intrusive. Moreover, static function identification in
stripped binaries is, in the general case, an unsolved
research problem—knowing where to patch a priori is
difficult.

A whole-system emulator, on the other hand, can pause
any user or kernel space program at an arbitrary point
in execution without patching the target program. Our
only remaining problem is function entry and exit iden-
tification. Assuming scope is a single concrete execution
and not identification of all functions present: how, when
analyzing stripped binaries, do we efficiently identify
function boundaries and correlate them back to native-ISA
program counters? While using a disassembler to check the
encoding of every executed instruction might work for a
single architecture, the ideal architecture-neutral solution
is lifting to an IR to capable of encoding function call
semantics.

Thanks to PyPANDA’s ecosystem composability, an
analyst is able to leverage any binary analysis IR that
offers Python bindings. We select three such IRs and

evaluate their ability to perform just-in-time call tracing
as follows:
• Immediately following the execution of every basic

block, filtering by process, we read the bytes encoding
that block’s instructions out of the guest.

• Each of three different IRs under test lift this basic
block “shellcode” to their respective representation.

• We query each representation to find direct (e.g.
offset-based) calls, indirect (e.g. register-based) calls,
and returns.

• To measure correctness, we evaluate the IR’s output
when the subsequent basic block is executed—did the
IR successfully identify a call and resolve the correct
target?

PANDA serves as our dynamic oracle, generating both
realistic non-random inputs (instruction byte streams from
real-world programs) and expected conclusions (the next
basic block executed is the correct destination for any
direct call).

This is just one example application of Dynamic Oracle
Testing. Our approach, essentially a feedback loop of
concrete inputs and concrete results produced by faithful
emulation, can be generalized to test any conclusion that
can drawn from lifting native instruction streams to an
IR.

3) IRs Under Test: We select three IRs based on three
criteria:
• Readily available Python bindings: can be rapidly in-

tegrated into PyPANDA without the need to compile
a library from source.

• Meaningful adoption: forms the basis of tooling used
in industry or the by the security research community.

• Multi-architecture: capable of lifting, at minimum,
x86, x64, ARM, and MIPS binaries.

VEX, our first selection, was originally introduced in
the Valgrind memory profiling and debugging tool [41]. It
represents a solution with wide general-purpose adoption,
often appearing in industry software development work-
flows [44]. We test PyVEX v9.0.4663 [32], the modified
variant used in the Angr symbolic execution toolkit and
countless other open-source security tools.

PCODE [30], our second selection, underpins Ghidra—
a reverse engineering application released by the NSA in
2019 and quickly gaining community traction as an alter-
native to paid, closed-source solutions. PCODE represents
a government-generated technology developed in largely
in isolation, though its roots trace back to academic work
[35]. Despite being relatively new to the public, we have
already seen community support for lifting new processors
via PCODE’s underlying SLEIGH specification format.
We test PyPCODE v0.0.2 [31] and use SLEIGH definitions
from Ghidra 9.2.

BAP [4], our final selection, powered the winner for
DARPA’s 2016 Cyber Grand Challenge [9]. BAP rep-
resents an academia-generated solution, widely citied in
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TABLE I
Userspace Call/Return Semantic Detection Rates by IR

IR DCall TP IDCalls Rets Fails
VEX (x86) 637 75 342 0
PCODE (x86) 635 85 342 0
BAP (x86) 637 75 342 0
VEX (x64) 474 47 333 0
PCODE (x64) 396 45 333 1323
BAP (x64) 474 47 333 0
VEX (ARM) 532 58 338 0
PCODE (ARM) 529 58 338 0
BAP (ARM) 529 0 338 0
VEX (MIPS) 252 608 526 9
PCODE (MIPS) 244 608 531 0
BAP (MIPS) DNF DNF DNF DNF

relevant research. Though BAP does not enjoy a level of
community adoption comparable to our other two IRs, it
remains actively developed. We test BAP’s 2.2.0 Debian
release along with the 1.3.1 pip package — the latter
subprocesses the former.

In the interest of reproducibility, we opt not to eval-
uate closed-source, commercial IRs that we cannot re-
distribute—notably Binary Ninja’s LLIL and MLIL [2].

4) Experiment Results: Testing is performed on a Linux
guest executing a sample binary (GNU coreutils program
whoami). For all supported architectures, we leverage
PyPANDA’s record and replay functionality to make all
results fully reproducible. For each IR, we measure ability
to detect call and return semantics for both userspace and
kernelspace code as shown in Tables I, II.

DCall TP is the number of direct call true positives
found. IDCalls is the number of indirect calls found (we
do not count these against a static IR, which has no
way to determine call target). Rets is the number of
returns found. Fails is the number of times an IR failed
to disassemble a basic block, meaning either an exception
occurred or no statements were produced. The first three
metrics are for unique basic blocks, meaning we do not
count multiple loop iterations—each block is lifted only
once and the results are cached. Failure count does not
represent unique blocks: it is a raw total that can increase
with loop iterations.

These data indicate that VEX is the most accurate
and robust IR of the three, particularly for x64 lifting.
PCODE performs slightly better in x86 kernel space due
to support for privileged instructions missing from the
other IRs (e.g. sysexit) and better ability to resolve call
encodings with high destination addresses. Where DNF
appears for BAP, our analysis run did not finish due
to a Python subprocess API, Popen, hanging indefinitely
when attempting to run the BAP binary. We checked a
random selection of these failures and found that the BAP
binary produced correct output when run manually via a
terminal. Unfortunately, this means our results for BAP
are inconclusive — although it’s correctness is comparable

TABLE II
Kernelspace Call/Return Semantic Detection Rates by IR

IR DCall TP IDCalls Rets Fails
VEX (x86) 3631 0 1922 4
PCODE (x86) 3644 0 1925 0
BAP (x86) DNF DNF DNF DNF
VEX (x64) 4448 0 2504 9
PCODE (x64) 4172 6 2501 4418
BAP (x64) DNF DNF DNF DNF
VEX (ARM) 2119 158 1490 0
PCODE (ARM) 2117 158 1484 0
BAP (ARM) DNF DNF DNF DNF
VEX (MIPS) 2635 212 1581 236
PCODE (MIPS) 2614 238 1590 0
BAP (MIPS) DNF DNF DNF DNF

to that of VEX in analyses which finish.
In addition to lift accuracy measures, we consider lift

performance. VEX is consistently the fastest of the three
(≈0.3 ms/block), lifting blocks at approximately 1.25x the
speed of PCODE (≈0.4 ms/block) and 20x the speed of
BAP (≈7.0 ms/block). BAP’s relative sluggishness is the
result of Python interoperability, not the IR itself: BAP’s
Python bindings subprocess an OCaml binary and collect
it’s output over a pipe. By contrast, VEX and PCODE’s
Python bindings call into C/C++ libraries via CFFI.

PCODE has a considerable setup cost, taking about
800 ms to parse a SLEIGH specification and initialize
the lifter. We chose to exclude this setup time from
our measurements because it is a one-time initialization
step and does not factor into how long it takes to
subsequently lift basic blocks, whereas we are concerned
with measuring per-block performance. It is worth noting
that this initialization strategy gives PCODE a potential
advantage: the core library does not need to be re-compiled
to support new architectures, as the lifter is dynamically
configured using the SLEIGH specification file.

B. Heap Monitoring
Many dynamic analysis tasks depend on the ability

to track function calls, arguments, and return values
from specific library or kernel functions. For example,
Valgrind [41], Dr. Memory [3], and other systems mon-
itor calls related to heap allocations (e.g., malloc, free,
__kmalloc, kfree, etc.) in order to identify memory
errors. Such analyses have been traditionally been built
by modifying compilers (e.g., Purify [37]), preloading
libraries at runtime (e.g., Malt [45]), or through virtual
machine introspection (e.g., Undangle [6]).

We implement a heap tracking analysis using Py-
PANDA in under 200 lines of Python code. The script
hooks kernel heap allocation made with __kmalloc and
freed with kfree as well as userspace heap allocations made
with malloc and freed with free through libc. To simplify
this example, we do not attempt to track all possible heap
allocations (e.g., those made with calloc).
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The key components of PyPANDA that enable this
analysis are its ability to drive guest execution, hook spe-
cific guest program counters to trigger callback functions,
and its ability to extract process-level information using
PANDA.

1) Hook Setup: PANDA’s hooks plugin allow for reg-
istering a function to run before the guest executes an
instruction a given program counter. To begin this analy-
sis, the script must first identify the addresses that must
be hooked. The address of kfree, __kmalloc and vmalloc
can be extracted from the System.map file using standard
Linux utilities controlled by PyPANDA’s run_serial_cmd
function. These addresses are in the kernel and will not
change while data are collected.

To record the necessary information, the requested
size must be recorded when __kmalloc and vmalloc are
entered and the return values must be recorded when
they returns. This script includes a simple helper function
to store this information and then call a user-provided
function when the function returns:

def hook_ret_with_args(panda, name, entry_addr, func=None,
asid=None, kernel=False):

hooked_args = []

@panda.hook(entry_addr, asid=asid, kernel=kernel)
def _enter(cpu, tb, h):

# Grab ret_addr off stack and first two args
sp = panda.arch.get_reg(cpu, 'rsp')
ret_addr = panda.virtual_memory_read(cpu, sp, 8, fmt='int')
hooked_args = [panda.arch.get_arg(cpu, i) for i in range(2)]

# Setup a new hook to run just once at ret_addr
# and call user-provided func
@panda.hook(ret_addr, asid=asid, kernel=kernel)
def _return(cpu, tb, h):

h.enabled = False
retval = panda.arch.get_reg(cpu, 'rax')
func(cpu, hooked_args, retval)

The script also needs to hook libc functions for track-
ing userspace heap behavior. Like with __kmalloc, the
analysis for malloc requires tracking both the size passed
into the function as well as the pointer that is returned.
The hook_ret_with_args function can be used again to
do this.

The script captures the offsets into libc to malloc and
free using the run_serial_cmd function again. Since libc
can be loaded at different base addresses for each process,
the hooked address for each process must be the libc base
address plus the offsets of these functions.

2) Process Hooking: Whenever a process may load libc
into memory, we must check if it was loaded and, if so, add
a new set of hooks for that process. We may discover libc
has been loaded after a context switch or after a process
uses the mmap or brk syscall to load a library. The script
registers PPP-style callbacks for these events with the OSI
and syscalls plugins and calls add_hooks_if_necessary after
each. At each callback, we check if the current process
lacks hooks, and if so use the OSI plugin to determine
if a library named libc has been loaded into its memory

space. If so, it calculates the address of malloc and free
and adds the relevant hooks.

def add_hooks_if_necessary(cpu):
if not analysis_active: return # Don't setup hooks until we're ready

asid = panda.current_asid(cpu)
if asid in hooked_asids: return # Already hooked this process

name = panda.get_process_name(cpu)
# Find current libc address and update hooks
for mapping in panda.get_mappings(cpu):

if mapping.file != panda.ffi.NULL and \
b'/libc-' in panda.ffi.string(mapping.file):

hooked_asids.add(asid)
hook_ret_with_args(panda, f'{name}_malloc', mapping.base +

malloc_offset, asid=asid,
func=lambda cpu, in_args, retval: add_alloc(retval, in_args[0],

asid=panda.current_asid(cpu),
name=panda.get_process_name(cpu)))

# Note for free we don't need return val, just the entry args
@panda.hook(mapping.base+free_offset, asid=asid, kernel=False)
def process_free(cpu, tb, h):

buf = panda.arch.get_reg(cpu, 'rax')
asid = panda.current_asid(cpu)
rem_alloc(buf, asid=asid)

3) Allocation Tracking: With the hooks set up, the
implementation of heap allocation tracking is trivial: when
objects are allocated, their size, address, and requesting
ASID is recorded in a dictionary. Kernel allocations are
indicated by storing an ASID of 0. When objects are freed
they are deleted from the dictionary using the ASID and
address.

4) Guest Control: After all the hooking and allocation
tracking logic is configured, a binary is copied into the
guest and executed. During its execution, the hooks are
enabled and a callback is setup to report the current
allocations every 1,000 basic blocks.

5) Visualization: The recorded data are visualized
through the Python library matplotlib [17] as shown in
Figure 3. The total number of active heap allocations is
presented for each ASID running in the guest system.

Fig. 3. Visualizing heap objects allocated over time.

6) Summary: This section describes building a stand-
alone dynamic analysis tool for heap analysis with
PyPANDA. The hook_ret_with_args helper function
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demonstrates how a complex functions not supported by
the PANDA API can easily be implemented in PyPANDA.
The entire analysis is built in under 200 lines of Python
code and runs with a wall time of 17.24s on average
(n=100).

C. Extracting and Transferring Packed Executables to
Ghidra with human-in-the-loop Entropy Analysis

A common technique seen in malicious software is
runtime packing. In malware, runtime packing is used as a
means of obfuscating the binary to make it more difficult
to identify it as malicious [19]. This is typically accom-
plished by providing a binary to a “packer” program. The
packer program takes the binary and either compresses or
encrypts it and produces a new program with the binary
data. When run this program takes the encrypted or
compressed binary data from its data section, reverses the
operation applied to the data, and then transfers control to
the original program. This has the effect of making reverse
engineering the program statically very difficult. However,
the process of packing leaves a mark: packed regions
typically have high entropy [23]. This characteristic can
be used to make an educated guess as to whether or not
a binary may be packed. PANDA is uniquely suited to
analyze malware as its position in the hypervisor makes it
more difficult to detect and its record and replay features
allow for reproducibility of functionality.

In this section we will discuss a PyPANDA script which
records a whole-system running a packed binary. The
script is given a process name to consider and computes
the entropy of all segments of memory throughout the life
of the process. As it performs this analysis, the script
spawns a Python Flask7 web server which serves live-
updating graphs the entropy of the process memory. If
a user is interested in looking at the program state at
some point along the graph they may click on the point.
The Flask server will receive their selection and spawn a
new process which replays the recording up to the point
of interest, extracts all mapped virtual memory in the
process, and transfers it to static analysis platform Ghidra
through the use of ghidra_bridge8, It does all of this,
including generating the recording, in fewer than 250 lines
of Python.

1) Entropy Analysis: Entropy analysis is quite simple in
PyPANDA. We begin by identifying the ASID for the pro-
cess of interest by registering a callback on asid_changed.
After each asid change, we check if the name of the current
process matches the provided name.

Once the ASID is identified, the entropy analysis can
begin. We set a callback on before_block_exec which first
cheks that the correct ASID is running and the guest is in
userspace. We provide an tunable parameter, granularity,
which controls how frequently we compute the process’

7https://flask.palletsprojects.com
8https://github.com/justfoxing/ghidra_bridge

entropy. When it is time to compute entropy, the script
reads all memory in the process by iterating over the
mappings provided by the OSI plugin. We then format
the data, compute a value for the entropy using the
scipy library [46], and record it along with the current
instruction count.

2) Flask server: In order to display this data to the
analyst we use the Flask Python module. The Flask server
runs using multiprocessing with a dedicated thread per
connection to enable live-updating of entropy visualization
as new data become available. When a point on the
graph is clicked, the Flask server starts a new process
to transition the program state at that point in time into
Ghidra.

Figure 4 shows this graph for a binary packed by
UPX [28] running. After unpacking, the binary reaches
a steady state and performs normal operations.

Fig. 4. Entropy graph of a packed process unpacking itself and
running as seen through Flask.

3) Transitioning to Ghidra: Our transition to Ghidra
begins by establishing a connection to ghidra_bridge. We
do this through the use of ghidra_bridge, a Python 3 mod-
ule for Remote Procedure Calls (RPC) to Ghidra using
their Jython interface. When we establish a connection
through ghidra_bridge we declare the namespace to be
globals(). This populates our main namespace with RPC
variables and allows us to do scripting with Ghidra in
a very similar manner to normal Ghidra scripting. Next,
we run our replay until we reach the instruction count
selected by the user. At this point we can to move our
program’s virtual memory to Ghidra. This is a fairly
simple process. In PyPANDA, we simply use our OSI
capabilities to list the virtual memory mappings for our
program and read them. In Ghidra, we establish a memory
transaction, create a memory segment per virtual memory
mapping, and then populate it with our data. Lastly, we
take the program counter at this point in time and set
cursor position in Ghidra to that program counter and
perform an auto-analysis of the program.

9



TABLE III
Runtime of PANDA vs PyPANDA analyses, averaged (n=10).

Replay Analysis Total Callbacks Run PANDA Runtime PyPANDA Runtime % Difference
grep
(4M insns.)

no-op 0 0.88s± 0.03 0.93s± 0.05 6%± 7
asid_logger 14 0.86s± 0.01 0.93s± 0.03 8%± 4
unique_bbs 0.94M 0.92s± 0.03 1.40s± 0.03 53%± 6

wget
(8M insns.)

no-op 0 1.02s± 0.02 1.08s± 0.04 5%± 5
asid_logger 21 1.04s± 0.03 1.08s± 0.03 4%± 4
unique_bbs 1.83M 1.10s± 0.03 2.02s± 0.03 83%± 5

sleep
(426M insns.)

no-op 0 8.20s± 0.16 8.28s± 0.25 1%± 4
asid_logger 108 8.36s± 0.24 8.23s± 0.23 2%± 4
unique_bbs 89.45M 13.46s± 0.24 51.67s± 0.35 284%± 7

TABLE IV
Source Lines of Code for Simple Analyses

Analysis PANDA (C++) PyPANDA
unique_bbs 20 9
asid_logger 18 8

4) Summary: In this section we described a PyPANDA
script which performs graphs the entropy of a binary
in real time and allows a user to transition program
state from any point in time into Ghidra for subsequent
analysis. This integration between Ghidra and PANDA
allows PyPANDA users to leverage Ghidra’s decompiler
and its analyses. PyPANDA enables such integrations
by easily synchronizing state between PANDA and other
projects with Python interfaces. This integration between
a disprate set of tools shows the value of using Python
for a scripting language. This analysis was built in under
250 lines of Python code.

D. Performance comparision of PyPANDA to PANDA
Unfortunately, the case studies presented are too com-

plex to reasonably reimplement without PyPANDA. To
compare PyPANDA’s performance to that of PANDA,
we developed two simple plugins in both PANDA and
PyPANDA. The first plugin, unique_bbs, tracks every
distinct program counter executed by storing it in a set. At
the end of the execution, the size of the set is printed. The
second, asid_logger, reports every time the ASID changes
by printing out the new ASID. The lines of source code
for each plugin are presented in Table IV.

Three PANDA recordings were captured on an i386
guest (using PyPANDA for convenience):

1) wget downloading from example.com.
2) grep searching through /etc/passwd.
3) sleep running for 20 seconds.
For each recording, we ran both the PANDA plugin

and the PyPANDA plugin 10 times and recorded the time
taken9. We also run each recording through PANDA and
PyPANDA with no analyses enabled (labeled no-op). The
average run time along with standard deviation for each
plugin is presented in Table III.

9We use the Linux time utility and combine the CPU time with the
kernel time to capture how long the process was actually executing.

Unsurprisingly, PyPANDA runs slower than compiled
PANDA plugins. There are additional costs when running
PyPANDA: a fixed startup cost to launching a Python
interpreter, loading the Python module, and a cost for
each time PANDA switches into PyPANDA (i.e., in a
callback). It is this last cost which is the most significant
to consider when developing PyPANDA scripts. As can
be seen in Table III the no-op and asid_logger analyses
have near-identical run times to native C. Only when the
number of callbacks run increases dramatically do we see a
significant performance cost. We believe this performance
is sufficient to enable many analyses to be completed in
PyPANDA.

When high-speed analyses are desired (i.e., for algo-
rithmically complex analyses of live systems) we tend
to consider two avenues. First, a PyPANDA prototype
could be developed and then transitioned into C or C++
to meet specific performance needs. Second, move more
speed-critical portions of code into a C or C++ plugin.
We have found that for many callbacks there is a series of
conditions (e.g. not in kernel, in specific process, etc.) for
the machine which must be met before complex analysis
is done. Writing a simple C plugin which handle this more
primitive initial checking before calling into Python can
lead to drastic performance improvements. For examples
of plugins of this type consider hooks, which calls a call-
back when a program counter reaches a particular value
and mem_hooks which calls a callback when a memory
transactions takes place that meet specified criteria.

VII. Discussion
Having successfully used PyPANDA to enable three

distinct dynamic analyses, we now consider if PyPANDA
met our design goals.

1) High Performance Scripting: PyPANDA’s meets our
goal of enabling high performance scripting as shown in
§VI-D. The core runtime overhead of PyPANDA with
few callbacks enabled is consistently below 10%. However,
there is a slight performance difference between callbacks
implemented in C/C++ code vs Python code. Generally,
compiled code will execute faster than Python code imple-
menting the same behaviors. As the complexity of the logic
run in a callback increases or the number of times callbacks
are run increases, the PyPANDA overhead will grow more
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pronounced. As previously shown in Table III, we see an
overhead as high as 284% when running nearly a simple
callback 90 million callbacks, but much lower overhead
for callbacks that run less frequently. This performance
trade-off fits well within our objective.

2) Unified Perspective: We sought to build a system
to unify the interfaces to interact with a guest and to
control its analysis. This is a shift in perspective from the
plugin system normally used for analysis with PANDA.
Traditionally PANDA is run from the command line with
various arguments which dictate the plugins to be loaded
and their various settings. Instead of compiling in an inter-
preter to a plugin in PANDA we intentionally inverted the
normal control structure of a plugin. We accomplished this
through compiling PANDA as a shared object. In doing
so we made PyPANDA encapsulate PANDA and provided
a path for other languages to encapsulate PANDA as
well through our PANDA API. In PyPANDA the process
begins with a Python script executed which sets up an
emulated machine, various plugins and their arguments,
its own python callbacks, and then chooses to either run
the machine or a replay. PyPANDA maintains the ability
to interact with and control the emulated machine through
a separate thread which can interact with various PANDA
interfaces including the PANDA monitor and the serial
console. In doing so we have provided a reproducible
mechanism to simultaneously control guest behavior and
analyze it from a single script.

3) Ease of Use: Through building PyPANDA, we took
several steps to improve the usability of PANDA. The
largest change is that we provided “generic” QCOW
images for every PANDA supported architecture which
are automatically downloaded along with a PANDA OSI
profile prior to use. All the required settings to run each
generic image are built into PyPANDA so only the image’s
name must be specified by a user. Another significant
improvement is that we created a docker container and
Python package for PyPANDA that can be installed
through the Python package manager, pip.

4) Integrations: A goal of this project was to enable
integrations between PANDA other software projects. By
selecting Python as our scripting language, we found a
significant number of relevant projects that could be easily
imported. As described in § VI, VEX, PyPCODE, Flask,
and Ghidra were all seamlessly integrated with PyPANDA
to enable program analyses.

5) Access to Internal PANDA Data Structures: By
using CFFI with the PANDA shared libraries and au-
togenerated headerfiles, PyPANDA can present parsed
structures as Python objects. This allows for nested
structure access as well as easy modification of structure
elements by name.

VIII. Related Work
There are many projects which are closely related

to PyPANDA. Other emulators have Python bindings

to enable program analysis but focus on execution of
shellcode of single binaries as opposed to a whole system.
For example, the Unicorn Engine [34] is another QEMU
fork with Python bindings capable of running shellcode
from many architectures. The Qiling framework [33, 20]
is a binary emulation framework built on top of Unicorn
with Python bindings which supports running individual
binaries in an analysis platform, but not a full operating
system.

Many dynamic analysis tools have been created with
Python interfaces. Frida [36] injects custom hooking
and tracing logic into compiled binaries using a Python
interface. Angr [47] is a Python-based framework that
enables static analyses of binaries and symbolic execution.
Recent advances to Angr [14] allow transfering state to
and from concrete execution environments (e.g., QEMU)
which enables transitioning between concrete and sym-
bolic executions.

Volatility [12] and Libvmi [49] enable virtual machine
introspection from Python which is akin to PANDA’s OSI
plugin. Both systems have OS-specific profiles which are
used to bridge the semantic gap [18] to provide meaningful
information about an operating system running in an
emulator.

avatar2 [26] is an orchestration platform designed to
transfer the state of a whole system between different
analysis platforms or a physical system. It initially sup-
ported transferring state into and out of PANDA as
well as limited interactions with both the guest through
PANDA’s gdbstub as well as PANDA itself (loading plu-
gins, recording/replaying) through the PANDA monitor.
Recent updates to avatar2 have added support for a “Py-
PANDA target” which enables avatar2 scripts to use the
PANDA API and callback system. Through this interface,
the avatar2 developers used PyPANDA’s hooks plugin for
what they describe as a “huge speedup” as compared to
avatar2’s traditional, GDB-based hook system [16].

Another related project to PyPANDA is PyREBox, a
dynamic analysis system built on top of QEMU with
Python-based callbacks. Although similar on the surface,
there are three significant differences between PyREBox
and PyPANDA. First, PyREBox is built on QEMU so it
cannot leverage PANDA’s plugin system, callbacks, nor
its record/replay system. Beyond this, PyREBox is im-
plemented by embedding a Python interpreter within the
emulator. As previously discussed in §III, this apparoch
is limiting as it prevents both our unified perspective of
dynamic analysis and access to emulator internal struc-
tures. Finally, PyREBox currently supports only Python
2 for scripting and is limited to the x86 and x86_64
architectures.

IX. Conclusions
Through this work, we identified that existing whole-

system dynamic analysis platforms largely lack scripting
interfaces, and have a split view of guest behavior and
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analyses. We designed PyPANDA to provide a Python
interface to the PANDA dynamic analysis platform and
to unify the analysts view of a system. Using PyPANDA,
we describe the process of implementing 3 distinct whole-
system dynamic analyses: evaluating binary analysis
frameworks, tracking heap allocations in all processes,
and dynamically moving program state into the Ghidra
reverse engineering framework. We examine the analyses
and discuss how PyPANDA achieved the requisite goals.
PyPANDA has been merged into the PANDA project
and is now publicly available at https://github.com/
panda-re/panda. We hope this platform will make the
field of dynamic analysis more welcoming for beginners
while allowing experts to conduct complex analyses and
integrations.
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